题目简介:一条直线上摆放着一行共n堆的石子。现要将石子有序地合并成一堆。规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆石子数 记为该次合并的得分。请编辑计算出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。
输入:
输入有多组测试数据。
每组第一行为n(n<=100),表示有n堆石子,。
二行为n个用空格隔开的整数,依次表示这n堆石子的石子数量ai(0<ai<=100)
输出:
每组测试数据输出有一行。输出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。
中间用空格分开。
思路:1.分析该题是简单的区间dp,dp[i][j]表示从i~j区间所得的最大最小分,类似于邻接表。
2.首先存下输入数据的前缀和, 方便去区间值。
3.初始化两个邻接表, 最小与最大的存值,利用存下来的数据hash[],来更新邻接表,思路与dp类似。
4.以几个例子推导公式 dp[1][2] = dp[1][1]+dp[2][2]+hash[2]-hash[0];
5.推导出核心公式, dp[i][j]=max/min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]); 开始改进完成代码。
代码区:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 110;
const int inf = 1e9;
int min_dp[maxn][maxn];
int max_dp[maxn][maxn];
int Hash[maxn];
int main()
{
int n;
while(cin >> n){
memset(Hash, 0, sizeof(Hash));
for(int i = 1; i <= n; i ++){
int tmp;
cin >> tmp;
Hash[i] = Hash[i-1] + tmp;
} // 利用类似哈希来存值
for(int k = 1; k < n; k ++ ){ //更新合并的组数
for(int i = 1; i <= n - k; i ++){ // 更新每一列
min_dp[i][i+k] = inf;
max_dp[i][i+k] = -1;
/**
将他们初始化, 方便比较更新值
**/
for(int j = i; j + 1 <= i + k; j ++){//遍历更新中间值
min_dp[i][i+k] = min(min_dp[i][i+k], min_dp[i][j]+min_dp[j+1][i+k] + Hash[i+k]-Hash[i-1]);
max_dp[i][i+k] = max(max_dp[i][i+k], max_dp[i][j]+max_dp[j+1][i+k] + Hash[i+k]-Hash[i-1]);
}
}
}
cout << min_dp[1][n] << " " << max_dp[1][n] << endl;
}
return 0;
}