2021-05-08

题目简介:一条直线上摆放着一行共n堆的石子。现要将石子有序地合并成一堆。规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆石子数                    记为该次合并的得分。请编辑计算出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。

  输入:       

                    输入有多组测试数据。

                     每组第一行为n(n<=100),表示有n堆石子,。

                     二行为n个用空格隔开的整数,依次表示这n堆石子的石子数量ai(0<ai<=100)

  输出:

                       每组测试数据输出有一行。输出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。

                       中间用空格分开。 

 思路:1.分析该题是简单的区间dp,dp[i][j]表示从i~j区间所得的最大最小分,类似于邻接表。

           2.首先存下输入数据的前缀和, 方便去区间值。

           3.初始化两个邻接表, 最小与最大的存值,利用存下来的数据hash[],来更新邻接表,思路与dp类似。

           4.以几个例子推导公式 dp[1][2] = dp[1][1]+dp[2][2]+hash[2]-hash[0];

           5.推导出核心公式, dp[i][j]=max/min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]); 开始改进完成代码。

 

 代码区:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 110;
const int inf = 1e9;
int min_dp[maxn][maxn];
int max_dp[maxn][maxn];
int Hash[maxn];

int main()
{
	int n;
	while(cin >> n){
		memset(Hash, 0, sizeof(Hash));
		for(int i = 1; i <= n; i ++){
			int tmp;
			cin >> tmp;
			Hash[i] = Hash[i-1] + tmp;
		} // 利用类似哈希来存值
			
		for(int k = 1; k < n; k ++ ){ //更新合并的组数
			for(int i = 1; i <= n - k; i ++){ // 更新每一列
				 min_dp[i][i+k] = inf;
				 max_dp[i][i+k] = -1;
				/**
				将他们初始化, 方便比较更新值
				**/  
				for(int j = i; j + 1 <= i + k; j ++){//遍历更新中间值
					min_dp[i][i+k] = min(min_dp[i][i+k], min_dp[i][j]+min_dp[j+1][i+k] + Hash[i+k]-Hash[i-1]);
					max_dp[i][i+k] = max(max_dp[i][i+k], max_dp[i][j]+max_dp[j+1][i+k] + Hash[i+k]-Hash[i-1]);
				} 
			}
		}
		cout << min_dp[1][n] << " " << max_dp[1][n] << endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值