Autoencoder学习手册(三)变分编码器(VAE)

本文介绍了变分自动编码器(VAE),它是自动编码器的一种增强形式,通过约束编码器生成的隐含向量遵循标准正态分布,允许生成新的样本。文章还提供了训练VAE模型的Python代码示例。
摘要由CSDN通过智能技术生成

变分自动编码器(Variational Autoencoder)

变分编码器是自动编码器的升级版本,其结构跟自动编码器是类似的,也由编码器和解码器构成。与一般的自动编码器最大的不同就是在编码过程给它增加一些限制,迫使其生成的隐含向量能够粗略的遵循一个标准正态分布。从而解决我们没有办法自己去构造隐藏向量,任意生成图片的缺点。

下面是训练VAE模型的代码:

x = Input(batch_shape=(batch_size, original_dim))
#全连接层h,nodes个数为intermediate_dim,激活函数为relu
h = Dense(intermediate_dim, activation='relu')(x)
#z_mean = 连接h的全链接层,nodes个数为latent_dim
z_mean = Dense(latent_dim)(h)
#z_log_sigma = 连接h的全链接层,nodes个数为latent_dim
z_log_sigma = Dense(latent_dim)(h)
#sample
def sampling(args):
    z_mean, z_log_sigma = args
    #生成随机正态分布epsilon
    epsilon = K.random_normal(shape=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值