kmean函数介绍

K-means聚类算法采用的是将NP的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小。
使用方法:
Idx=Kmeans(X,K)
[Idx,C]=Kmeans(X,K)
[Idx,C,sumD]=Kmeans(X,K)
[Idx,C,sumD,D]=Kmeans(X,K)
[…]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…)
各输入输出参数介绍:
X :N
P的数据矩阵
K: 表示将X划分为几类,为整数
Idx :N1的向量,存储的是每个点的聚类标号
C: K
P的矩阵,存储的是K个聚类质心位置
sumD 1K的和向量,存储的是类间所有点与该类质心点距离之和
D N
K的矩阵,存储的是每个点与所有质心的距离
[…]=Kmeans(…,‘Param1’,Val1,‘Param2’,Val2,…)
这其中的参数Param1、Param2等,主要可以设置为如下:
1. ‘Distance’(距离测度)
‘sqEuclidean’ 欧式距离(默认时,采用此距离方式)
‘cityblock’ 绝度误差和,又称:L1
‘cosine’ 针对向量
‘correlation’ 针对有时序关系的值
‘Hamming’ 只针对二进制数据
2. ‘Start’(初始质心位置选择方法)
‘sample’ 从X中随机选取K个质心点
‘uniform’ 根据X的分布范围均匀的随机生成K个质心
‘cluster’ 初始聚类阶段随机选择10%的X的子样本(此方法初始使用’sample’方法)
matrix 提供一KP的矩阵,作为初始质心位置集合
3. ‘Replicates’(聚类重复次数) 整数
K-means 聚类 代码
[nrows ncols] = size(h1);
h1 = reshape(h,nrows
ncols,1);
nColors = 2; %分割的区域个数为

[cluster_idx,cluster_center] = kmeans(h1,nColors,‘distance’,‘sqEuclidean’,‘Replicates’,10); %重复聚类3次
pl = reshape(cluster_idx,nrows,ncols);
figure,imshow(pl,[]), title(‘聚类结果’);
a(:,:,1)=pl;
a(:,:,2)=pl;
a(:,:,3)=pl;
result=a.*A;
figure,imshow(result),title(‘result’);

————————————————
版权声明:本文为CSDN博主「SethChai」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/a493823882/article/details/79282425

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值