之前对动态规划一直不太感冒,看半天也不知道它是什么意思,经过这几天的学习总算是明白了,在这里写个博客纪念一下,顺便与大家分享。
0-1背包问题:
有5个物体,编号分别为1,2,3,4,5、重量分别为2、2、6、5、4价值为,6、3、5、4、6,给你一个承重为10的背包,问怎样装可以让背包内的物体重量不超过10,且价值最大。
#include <iostream>
#include <algorithm>
#define ML 100
using namespace std;
int Kf[ML][ML];
/*
目标:在不超过背包容量的情况下,最多能获得多少价值
子问题状态:f[i][j]:表示前i件物品放入容量为j的背包得到的最大价值
状态转移方程:f[i][j] = max{f[i - 1][j],f[i - 1][j - weight[i]] + value[i]}
初始化:f数组全设置为0
*/
void Knapsack(int *W, int *V, int N, int M)
{
//初始化
memset(Kf, 0, sizeof(Kf));
//递推
for (int i = 1; i <= N; i++) //枚举物品
{
for (int j = 0; j <= M; j++) //枚举背包容量
{
Kf[i][j] = Kf[i - 1][j];
if (j >= W[i])
{
Kf[i][j] = max(Kf[i - 1][j], Kf[i - 1][j - W[i]] + V[i]);
}
}
}
}
int main(int argc, char *argv[])
{
int N, Max_W; //N为物品数量,Max_W为背包的最大承重
while (cin >> N >> Max_W)
{
int Weight[ML]; //每个物品的重量
int Value[ML]; //每个物品的价值
for (int i = 1; i <= N; i++)
{
cin >> Weight[i];
}
for (int i = 1; i <= N; i++)
{
cin >> Value[i];
}
Knapsack(Weight, Value, N, Max_W);
cout << Kf[N][Max_W] << endl;
}
return 0;
}