背包九讲——0-1背包问题

之前对动态规划一直不太感冒,看半天也不知道它是什么意思,经过这几天的学习总算是明白了,在这里写个博客纪念一下,顺便与大家分享。

0-1背包问题:

有5个物体,编号分别为1,2,3,4,5、重量分别为2、2、6、5、4价值为,6、3、5、4、6,给你一个承重为10的背包,问怎样装可以让背包内的物体重量不超过10,且价值最大。


#include <iostream>
#include <algorithm>
#define ML 100
using namespace std;

int Kf[ML][ML];
/*
目标:在不超过背包容量的情况下,最多能获得多少价值

子问题状态:f[i][j]:表示前i件物品放入容量为j的背包得到的最大价值

状态转移方程:f[i][j] = max{f[i - 1][j],f[i - 1][j - weight[i]] + value[i]}

初始化:f数组全设置为0
*/
void Knapsack(int *W, int *V, int N, int M)
{
    //初始化
    memset(Kf, 0, sizeof(Kf));
    //递推
    for (int i = 1; i <= N; i++) //枚举物品
    {
        for (int j = 0; j <= M; j++) //枚举背包容量
        {
            Kf[i][j] = Kf[i - 1][j];
            if (j >= W[i])
            {
                Kf[i][j] = max(Kf[i - 1][j], Kf[i - 1][j - W[i]] + V[i]);
            }
        }
    }
}

int main(int argc, char *argv[])
{
    int N, Max_W;   //N为物品数量,Max_W为背包的最大承重
    while (cin >> N >> Max_W)
    {
        int Weight[ML];     //每个物品的重量
        int Value[ML];      //每个物品的价值
        for (int i = 1; i <= N; i++)
        {
            cin >> Weight[i];
        }
        for (int i = 1; i <= N; i++)
        {
            cin >> Value[i];
        }

        Knapsack(Weight, Value,  N, Max_W);
        cout << Kf[N][Max_W] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值