语音唤醒,即关键词检索(keyword spotting, KWS)。用语音唤醒设备,让设备由休眠状态切换至工作状态。
下面主要对基于端到端的深度学习方法的语音唤醒模型总结。
模型输入为语音,输出为各唤醒词的概率,一个模型解决,不需要再进行解码。
通常包括三个部分:第一步是特征的提取,第二步是一个神经网络,它的输入是语音特征,输出是各个关键词和非关键词即Filler这样一个后验概率。由于第二步的网络是以帧为单位输出后验值的,就需要第三步对后验值以一定的窗长进行平滑,平滑后的后验值如果超过一定阈值会被认为是唤醒了。
1、基于CNN的语音唤醒
《Convolutional Neural Networks for Small-footprint Keyword Spotting _Google2015》
基于CNN的KWS模型。构建可以识别 10 个不同字词的基本语音识别网络。该模型会尝试将时长为 1 秒的音频片段归类为无声、未知字词、“yes”、“no”、“up”、“down”、“left”、“right”、“on”、“off”、“stop”或“go”。
基于端到端的深度学习方法,可以作为入门资料,模型比较简单。设计了几个不同的CNN结构。缺点是模型参数比较多,运算量较大。
开源代码,在TensorFlow官网可以下载。
https://github.com/tensorflow/