LRC (电感电阻电容)组成的二阶系统公式推导

首先从简化的 LC (电感电容)串联电路入手,分析阶跃信号下,电容两端电压的变化情况,对 LC (电感电容)电路进行公式推导,并进行了理论情况下的计算与仿真,因电池有内阻,导线和电感也都有电阻,所以实际情况下电阻不能忽略,因此 LC 实际测试结果与仿真结果有差异,从而引出了 LRC (电感电阻电容)电路的分析和推导,并进行了仿真验证。

LC (电感电容)电路中电容两端电压变化的函数推导

LC(电感电容)电路如下。
LC电路

已知条件

从图中可知:

电源电压
v s ( t ) = { 0 , t ≤ 0 V I , t > 0 v_s(t)= \begin{cases} 0,\quad t\leq 0 \\[2ex] V_I, \quad t>0 \end{cases} vs(t)= 0,t0VI,t>0

电容两端初始电压
v ( 0 ) = 0 v(0) = 0 v(0)=0

电感两端初始电流
i ( 0 ) = 0 i(0) = 0 i(0)=0

待求的电容两端电压函数为 v(t)

前置知识

  • 电容伏安特性: i = C d v d t i = C\frac{dv}{dt} i=Cdtdv
  • 电感伏安特性: v = L d i d t v = L\frac{di}{dt} v=Ldtdi
  • 电感伏安特性的积分形式:
    1 L ∫ − ∞ t v d t = i \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v \mathrm{d} t \end{aligned} = i L1tvdt=i

公式推导

根据节点法,流入节点电流等于流出节点的电流,有

1 L ∫ − ∞ t ( V I − v ( t ) ) d t = C d v ( t ) d t \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t (V_I - v(t)) \mathrm{d} t \end{aligned} = C\frac{d{v(t)}}{dt} L1t(VIv(t))dt=Cdtdv(t)

对方程两端进行对 t 求导

1 L ( V I − v ( t ) ) = C d 2 v ( t ) d t 2 \frac{1}{L}(V_I - v(t)) = C\frac{d^2{v(t)}}{dt^2} L1(VIv(t))=Cdt2d2v(t)

移项整理得

L C d 2 v ( t ) d t 2 + v ( t ) = V I LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI

这里 L 、 C 、 V I L、 C、 V_I LCVI 都是已知常数,所以解上边这个二阶微分方程,就可以得到电容两端电压随时间变化的函数。

我们的目的是解出 v ( t ) v(t) v(t)

这里使用求特解加齐次解的方法解这个微分方程:

总的通解为特解+齐次解

v ( t ) = v p ( t ) + v h ( t ) v(t) = v_p(t) + v_h(t) v(t)=vp(t)+vh(t)

v p ( t ) v_{p}(t) vp(t) ,特解

v h ( t ) v_{h}(t) vh(t) ,齐次解

分为下面三个步骤:

  1. 找出特解
  2. 找出对应的齐次方程的通解
  3. 根据初始条件计算通解中的常数参数
1.找特解

L C d 2 v p ( t ) d t 2 + v p ( t ) = V I LC\frac{d^2{v_p(t)}}{dt^2} + v_p(t) = V_I LCdt2d2vp(t)+vp(t)=VI

尝试 v p ( t ) = V I v_p(t) = V_I vp(t)=VI, 带入后满足方程,即
v p ( t ) = V I v_p(t) = V_I vp(t)=VI

2.找齐次方程通解

首先,令方程右边为 0,

L C d 2 v ( t ) d t 2 + v ( t ) = V I LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI

得到对应的齐次方程:

L C d 2 v H ( t ) d t 2 + v H ( t ) = 0 LC\frac{d^2{v_H(t)}}{dt^2} + v_H(t) = 0 LCdt2d2vH(t)+vH(t)=0

v H ( t ) = A e s t v_H(t) = Ae^{st} vH(t)=Aest,找到满足齐次方程的 A 和 s,即可得到齐次解,
v H ( t ) = A e s t v_H(t) = Ae^{st} vH(t)=Aest带入上边的二阶微分方程:

L C A s 2 e s t + A e s t = 0 LCAs^2e^{st} + Ae^{st} = 0 LCAs2est+Aest=0

这里不需要 A = 0 的解,所以可以约掉 A e s t Ae^{st} Aest,化简为:

L C s 2 + 1 = 0 LCs^2 + 1 = 0 LCs2+1=0

得到特征方程

s 2 = − 1 L C s^2 = -\frac{1}{LC} s2=LC1

开根号

s = ± j 1 L C s = \pm j\sqrt{\frac{1}{LC}} s=±jLC1

ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1

上式可以简化成

s = ± j ω 0 s = \pm j\omega_0 s=±jω0

根据二阶微分 L C d 2 v ( t ) d t 2 + v ( t ) = V I LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI ,可以看出 LC 的平方根的单位是时间,因此 ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1 是频率(时间的倒数)

因此,可以得到齐次方程的通解:

v H = A 1 e j ω 0 t + A 2 e − j ω 0 t v_H = A_1e^{j\omega_0t} + A_2e^{-j\omega_0t} vH=A1ejω0t+A2ejω0t

其中

ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1

3.通过初始条件计算常数参数

现在得到了总的解

v = v P + v H v = v_P + v_H v=vP+vH

带入得

v = V I + A 1 e j ω 0 t + A 2 e − j ω 0 t v = V_I + A_1e^{j\omega_0t} + A_2e^{-j\omega_0t} v=VI+A1ejω0t+A2ejω0t

其中

ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1

根据已知的初始条件 v C ( 0 ) = 0 v_C(0) = 0 vC(0)=0,即 v ( 0 ) = 0 v(0) = 0 v(0)=0

带入可得

0 = V I + A 1 + A 2 0 = V_I + A_1 + A_2 0=VI+A1+A2

根据另一个已知条件 i L ( 0 ) = 0 i_L(0) = 0 iL(0)=0,因为:
i = C d v d t i = C\frac{dv}{dt} i=Cdtdv

所以,当 t = 0 时,有

0 = C A 1 j ω 0 e j ω 0 t + C A 2 ( − j ω 0 ) e − j ω 0 t 0 = CA_1j\omega_0e^{j\omega_0t} + CA_2(-j\omega_0)e^{-j\omega_0t} 0=CA1jω0ejω0t+CA2(jω0)ejω0t

消掉公共项,可得

0 = A 1 − A 2 0 = A_1 - A_2 0=A1A2


A 1 = A 2 A_1 = A_2 A1=A2

根据得到的方程组

{ A 1 = A 2 0 = V I + A 1 + A 2 \left\{ \begin{array}{c} A_1 = A_2 \\ 0 = V_I + A_1 + A_2 \end{array} \right. {A1=A20=VI+A1+A2

可以解得

A 1 = A 2 = − V I 2 A_1 = A_2 = -\frac{V_I}{2} A1=A2=2VI

可以得到最终的 v(t) 的解为:

v ( t ) = V I − V I 2 ( e j ω 0 t + e − j ω 0 t ) v(t) = V_I - \frac{V_I}{2}(e^{j\omega_0t}+e^{-j\omega_0t}) v(t)=VI2VI(ejω0t+ejω0t)

根据欧拉公式 e j x = c o s x + j s i n x e^{jx} = cosx + jsinx ejx=cosx+jsinx,上式还可整理成如下形式:

v ( t ) = V I − V I c o s ( ω 0 t ) v(t) = V_I - V_Icos(\omega_0t) v(t)=VIVIcos(ω0t)

到此,推导结束,可以得到电容两端的电压以及电流( C d v d t C\frac{dv}{dt} Cdtdv)随时间的变化关系:

v ( t ) = V I − V I c o s ( ω 0 t ) i ( t ) = C V I ω 0 s i n ( ω 0 t ) \left. \begin{array}{c} v(t) = V_I - V_Icos(\omega_0t) \\ i(t) = CV_I\omega_0sin(\omega_0t) \end{array} \right. v(t)=VIVIcos(ω0t)i(t)=CVIω0sin(ω0t)

其中

ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1

结果验证

取以下参数进行验证:

  • 直流电压源电压 V I = 1.3 V V_I = 1.3V VI=1.3V
  • 电感 L = 3.7 m H L = 3.7mH L=3.7mH
  • 电容 C = 10 u F C = 10uF C=10uF
1. 数学函数曲线

将选取的参数值带入电容电压函数中,得到
v = 1.3 − 1.3 ∗ c o s ( 1 3.7 ∗ 1 0 − 3 ∗ 10 ∗ 1 0 − 6 ∗ t ) \left. \begin{array}{c} v = 1.3 - 1.3*\\ cos(\sqrt{\frac{1}{3.7*10^{-3} * 10*10^{-6}}}*t) \end{array} \right. v=1.31.3cos(3.7103101061 t)

绘制函数曲线如下

LC函数曲线

2. 仿真验证

根据选取的参数,在 LTspice 中进行仿真,与函数曲线结果一致,结果如下
LC仿真结果

3. 实验验证

搭建了实验电路进行实际测试,发现结果与理论计算及仿真结果不一致,实验过程如下

1.实验电路

下图为实验用到的元件及装置,使用了 1.3V (标称1.2v,实测1.3v) 的 7 号电池 作为直流源,标称值 10uF 的电容,以及标称值 3.7mH 的电感线圈。

LRC实验装置

2.实验结果

下图为示波器上升沿单次触发捕获的波形,可以看到波形与理论计算不一致。

LRC实测结果

3.问题分析

这里不一致是因为电路中各部分包含的电阻所导致,电池包含内阻,导线、电感线圈都具有一定的电阻值,所以实际电路中还有电阻的串联需要考虑进去,下面继续对 LRC (电感电阻电容串联)电路进行分析。

LRC 电路公式推导

构造电路模型

根据上面的分析,我们实际实验的电路等效模型如下图所示

LRC电路

列 LRC 二阶微分方程

利用节点法,在图中红色的节点 vA(t) 处,根据流入节点电流等于流出节点的电流,有:
1 L ∫ − ∞ t ( v I ( t ) − v A ( t ) ) d t = v A ( t ) − v ( t ) R \frac{1}{L}\int\limits_{-\infty}^t(v_I(t)-v_A(t)) \mathrm{d} t = \frac{v_A(t) - v(t)}{R} L1t(vI(t)vA(t))dt=RvA(t)v(t)

根据电阻电容间的节点可以写出如下:

v A ( t ) − v ( t ) R = C d v ( t ) d t \frac{v_A(t) - v(t)}{R}=C\frac{dv(t) }{dt} RvA(t)v(t)=Cdtdv(t)

整理消元后得:

1 L ∫ − ∞ t ( v I ( t ) − C d v ( t ) d t R − v ( t ) ) d t = C d v ( t ) d t \begin{array}{c} \frac{1}{L}\int\limits_{-\infty}^t(v_I(t)-C\frac{dv(t) }{dt}R - v(t)) \mathrm{d} t\\ = C\frac{dv(t) }{dt} \end{array} L1t(vI(t)Cdtdv(t)Rv(t))dt=Cdtdv(t)

对两边对 t 进行微分:

L C d 2 v ( t ) d t 2 = v I ( t ) − C d v ( t ) d t R − v ( t ) LC\frac{d^2v(t)}{dt^2} = v_I(t) - C\frac{dv(t)}{dt}R - v(t) LCdt2d2v(t)=vI(t)Cdtdv(t)Rv(t)

移项并整理得:

d 2 v ( t ) d t 2 + R L d v ( t ) d t + 1 L C v ( t ) = v I ( t ) L C \frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{v_I(t)}{LC} dt2d2v(t)+LRdtdv(t)+LC1v(t)=LCvI(t)

这就是我们要解的 LRC 电路的二阶微分方程。

解 LRC二阶微分方程

设电压源输入信号为阶跃信号:
v I ( t ) = { 0 , t ≤ 0 V I , t > 0 v_I(t)= \begin{cases} 0,\quad t\leq 0 \\[2ex] V_I, \quad t>0 \end{cases} vI(t)= 0,t0VI,t>0

初始条件为电容初始电压等于 0v, 电感初始电流等于 0A:

v ( 0 ) = 0 , i ( 0 ) = 0 v(0) = 0,\quad i(0) = 0 v(0)=0,i(0)=0

总的通解为特解+齐次解

v ( t ) = v p ( t ) + v h ( t ) v(t) = v_p(t) + v_h(t) v(t)=vp(t)+vh(t)

v p ( t ) v_{p}(t) vp(t) ,特解

v h ( t ) v_{h}(t) vh(t) ,齐次解

再次列出我们一直用的方法步骤:

  1. 找出特解 vp(t)
  2. 找出对应的齐次方程的通解 vh(t)
  3. 根据初始条件计算通解中的常数参数
1. 找特解 vp

d 2 v p ( t ) d t 2 + R L d v p ( t ) d t + 1 L C v p ( t ) = V I L C \frac{d^2v_p(t)}{dt^2} + \frac{R}{L}\frac{dv_p(t)}{dt} + \frac{1}{LC}v_p(t) = \frac{V_I}{LC} dt2d2vp(t)+LRdtdvp(t)+LC1vp(t)=LCVI

尝试 v p ( t ) = V I v_p(t) = V_I vp(t)=VI, 带入后等式成立,所以可以得到一个特解:
v p = V I v_p = V_I vp=VI

2. 找齐次解 vh

d 2 v h ( t ) d t 2 + R L d v h ( t ) d t + 1 L C v h ( t ) = 0 \frac{d^2v_h(t)}{dt^2} + \frac{R}{L}\frac{dv_h(t)}{dt} + \frac{1}{LC}v_h(t) = 0 dt2d2vh(t)+LRdtdvh(t)+LC1vh(t)=0

尝试 v h ( t ) = A e s t v_h(t) = Ae^{st} vh(t)=Aest 的形式,代入对应的齐次方程有:

A s 2 e s t + R L A s e s t + 1 L C A e s t = 0 As^2e^{st} + \frac{R}{L}Ase^{st} + \frac{1}{LC}Ae^{st} = 0 As2est+LRAsest+LC1Aest=0

舍掉 A = 0 的情况,并约掉相同项,化简得到特征方程

s 2 + R L s + 1 L C = 0 s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 s2+LRs+LC1=0

引入新的符号简记方程,令

2 α = R L 2\alpha = \frac{R}{L} 2α=LR

ω 0 = 1 L C \omega_0= \sqrt{\frac{1}{LC}} ω0=LC1

特征方程对应的表示为

s 2 + 2 α s + ω 0 2 = 0 s^2 + 2\alpha s + \omega_0^2 = 0 s2+2αs+ω02=0

解得:

s 1 = − α + α 2 − ω 0 2 s 2 = − α − α 2 − ω 0 2 \begin{array}{c} s_1= -\alpha + \sqrt{\alpha^2-\omega_0^2} \\ s_2= -\alpha - \sqrt{\alpha^2-\omega_0^2} \end{array} s1=α+α2ω02 s2=αα2ω02

可以的到齐次解为:

v h ( t ) = A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v_h(t) = A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} vh(t)=A1e(α+α2ω02 )t+A2e(αα2ω02 )t

3. 根据初始条件计算未知常数

现在可以计算总的解为:

v ( t ) = V I + A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(α+α2ω02 )t+A2e(αα2ω02 )t

根据初始条件:

v ( 0 ) = 0 v(0) = 0 v(0)=0

可得
0 = V I + A 1 + A 2 0 = V_I + A_1 + A_2 0=VI+A1+A2

根据初始条件:

i ( 0 ) = 0 i(0) = 0 i(0)=0

以及电流方程:

i ( t ) = C d v d t = C A 1 ( − α + α 2 − ω 0 2 ) e ( − α + α 2 − ω 0 2 ) t + C A 2 ( − α − α 2 − ω 0 2 ) e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} i(t) = C\frac{dv}{dt} \\ = CA_1(-\alpha + \sqrt{\alpha^2-\omega_0^2})e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ CA_2(-\alpha - \sqrt{\alpha^2-\omega_0^2})e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} i(t)=Cdtdv=CA1(α+α2ω02 )e(α+α2ω02 )t+CA2(αα2ω02 )e(αα2ω02 )t

可得:

0 = A 1 ( − α + α 2 − ω 0 2 ) + A 2 ( − α − α 2 − ω 0 2 ) \begin{array}{c} 0 = A_1(-\alpha + \sqrt{\alpha^2-\omega_0^2}) + \\ A_2(-\alpha - \sqrt{\alpha^2-\omega_0^2}) \end{array} 0=A1(α+α2ω02 )+A2(αα2ω02 )

联立方程:

0 = V I + A 1 + A 2 0 = V_I + A_1 + A_2 0=VI+A1+A2

0 = A 1 ( − α + α 2 − ω 0 2 ) + A 2 ( − α − α 2 − ω 0 2 ) \begin{array}{c} 0 = A_1(-\alpha + \sqrt{\alpha^2-\omega_0^2}) + \\ A_2(-\alpha - \sqrt{\alpha^2-\omega_0^2}) \end{array} 0=A1(α+α2ω02 )+A2(αα2ω02 )

可得最终的总解为:

v ( t ) = V I + A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(α+α2ω02 )t+A2e(αα2ω02 )t

其中,当 α 2 − ω 0 2 ≠ 0 \alpha^2-\omega_0^2 \neq 0 α2ω02=0 时,

A 1 = V I ( α + α 2 − ω 0 2 ) − 2 α 2 − ω 0 2 A 2 = V I ( − α + α 2 − ω 0 2 ) − 2 α 2 − ω 0 2 \begin{array}{c} A_1 = \frac{V_I(\alpha + \sqrt{\alpha^2-\omega_0^2})}{-2\sqrt{\alpha^2-\omega_0^2}} \\ A_2 = \frac{V_I(-\alpha + \sqrt{\alpha^2-\omega_0^2})}{-2\sqrt{\alpha^2-\omega_0^2}} \end{array} A1=2α2ω02 VI(α+α2ω02 )A2=2α2ω02 VI(α+α2ω02 )

α 2 − ω 0 2 = 0 \alpha^2-\omega_0^2 = 0 α2ω02=0 时,对应后面临界阻尼的情况。

分情况讨论

根据 α 2 − ω 0 2 \alpha^2 - \omega_0^2 α2ω02 的正负关系,可以分三种情况讨论:

1. α > ω 0 \alpha > \omega_0 α>ω0,为过阻尼 (Overdamped)

此时 α 2 − ω 0 2 \sqrt{\alpha^2 - \omega_0^2} α2ω02 为实数,v(t) 可以简化为下面这个形式:

v ( t ) = V I + A 1 e − α 1 t + A 2 e − α 2 t v(t) = V_I + A_1e^{-\alpha_1t} + A_2e^{-\alpha_2t} v(t)=VI+A1eα1t+A2eα2t

可以绘制如下曲线,只看 t > 0 的部分,可以观察到过阻尼的响应曲线的形式。

过阻尼

2. α < ω 0 \alpha < \omega_0 α<ω0,为欠阻尼 (Underdamped)

原式如下

v ( t ) = V I + A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(α+α2ω02 )t+A2e(αα2ω02 )t

因为 $ \alpha2-\omega_02 < 0 $,所以在根号里可以提取出 -1, 原式可以化简为:

v ( t ) = V I + A 1 e − α t e ( j ω 0 2 − α 2 ) t + A 2 e − α t e ( − j ω 0 2 − α 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{-\alpha t}e^{(j\sqrt{\omega_0^2-\alpha^2})t} + \\ A_2e^{-\alpha t}e^{(-j\sqrt{\omega_0^2-\alpha^2})t} \end{array} v(t)=VI+A1eαte(jω02α2 )t+A2eαte(jω02α2 )t

为了简化方程,引入新的参数标记:

ω d = ω 0 2 − α 2 \omega_d = \sqrt{\omega_0^2 - \alpha^2} ωd=ω02α2

则可简记为

v ( t ) = V I + A 1 e − α t e j w d t + A 2 e − α t e − j w d t v(t) = V_I + A_1e^{-\alpha t}e^{jw_dt} + A_2e^{-\alpha t}e^{-jw_dt} v(t)=VI+A1eαtejwdt+A2eαtejwdt

根据欧拉公式:

e j ω d t = c o s ( ω d t ) + j s i n ( ω d t ) e^{j\omega_dt} = cos(\omega_dt) + jsin(\omega_dt) ejωdt=cos(ωdt)+jsin(ωdt)

可以进一步化简

v ( t ) = V I + K 1 e − α t c o s ( ω d t ) + K 2 e − α t s i n ( ω d t ) \begin{array}{c} v(t) = V_I + K_1e^{-\alpha t}cos(\omega_dt) +\\ K_2e^{-\alpha t}sin(\omega_dt) \end{array} v(t)=VI+K1eαtcos(ωdt)+K2eαtsin(ωdt)

其中

K 1 = A 1 + A 2 , K 2 = ( A 1 − A 2 ) j K_1 = A_1 + A_2, K_2 = (A_1 - A_2)j K1=A1+A2K2=(A1A2)j

根据初始条件: v ( 0 ) = 0 v(0) = 0 v(0)=0,可以推出 K 1 = − V I K_1 = -V_I K1=VI

又因为:

i ( t ) = C d v d t = − C K 1 α e − α t c o s ( ω d t ) − C K 1 ω d e − α t s i n ( ω d t ) − C K 2 α e − α t s i n ( ω d t ) + C K 2 ω d e − α t c o s ( ω d t ) \begin{array}{c} i(t) = C\frac{dv}{dt} \\ = -CK_1\alpha e^{-\alpha t}cos(\omega_dt)-\\ CK_1\omega_d e^{-\alpha t}sin(\omega_dt)-\\ CK_2\alpha e^{-\alpha t}sin(\omega_dt) + \\ CK_2\omega_d e^{-\alpha t}cos(\omega_dt) \end{array} i(t)=Cdtdv=CK1αeαtcos(ωdt)CK1ωdeαtsin(ωdt)CK2αeαtsin(ωdt)+CK2ωdeαtcos(ωdt)

带入初始条件: i ( 0 ) = 0 i(0) = 0 i(0)=0,可得:

0 = − K 1 α + K 2 ω d K 2 = − V I α ω d \begin{array}{c} 0 = -K_1\alpha + K_2\omega_d \\ K_2 = -\frac{V_I\alpha}{\omega_d} \end{array} 0=K1α+K2ωdK2=ωdVIα

将得到的 K1, K2 带入可得

v ( t ) = V I − V I e − α t c o s ( ω d t ) − V I α ω d e − α t s i n ( ω d t ) \begin{array}{c} v(t) = V_I - V_Ie^{-\alpha t}cos(\omega_dt) -\\ V_I\frac{\alpha}{\omega_d}e^{-\alpha t}sin(\omega_dt) \end{array} v(t)=VIVIeαtcos(ωdt)VIωdαeαtsin(ωdt)

根据以下公式可知,同频率不同幅度的正余弦函数相加,可以写成一个正弦或者余弦的形式,如下:
A 1 c o s ( θ ) + A 2 s i n ( θ ) = A 1 2 + A 2 2 c o s ( θ − t a n − 1 ( A 2 A 1 ) ) = A 1 2 + A 2 2 s i n ( θ + t a n − 1 ( A 1 A 2 ) ) \begin{array}{c} A_1cos(\theta) + A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}cos(\theta-tan^{-1}(\frac{A_2}{A_1}))\\ =\sqrt{A_1^2+A_2^2}sin(\theta+tan^{-1}(\frac{A_1}{A_2})) \end{array} A1cos(θ)+A2sin(θ)=A12+A22 cos(θtan1(A1A2))=A12+A22 sin(θ+tan1(A2A1))

A 1 c o s ( θ ) − A 2 s i n ( θ ) = A 1 2 + A 2 2 c o s ( θ + t a n − 1 ( A 2 A 1 ) ) = A 1 2 + A 2 2 s i n ( θ − t a n − 1 ( A 1 A 2 ) ) \begin{array}{c} A_1cos(\theta) - A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}cos(\theta+tan^{-1}(\frac{A_2}{A_1}))\\ =\sqrt{A_1^2+A_2^2}sin(\theta-tan^{-1}(\frac{A_1}{A_2})) \end{array} A1cos(θ)A2sin(θ)=A12+A22 cos(θ+tan1(A1A2))=A12+A22 sin(θtan1(A2A1))

可以把 v(t) 化简为一个余弦的形式

v ( t ) = V I − V I ω 0 ω d e − α t c o s ( ω d t − t a n − 1 α ω d ) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VIVIωdω0eαtcos(ωdttan1ωdα)

最终得到欠阻尼条件下 LRC 电路电容两端电压的表达式为:

v ( t ) = V I − V I ω 0 ω d e − α t c o s ( ω d t − t a n − 1 α ω d ) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VIVIωdω0eαtcos(ωdttan1ωdα)

其中,

α = R 2 L \alpha = \frac{R}{2L} α=2LR

ω 0 = 1 L C \omega_0= \sqrt{\frac{1}{LC}} ω0=LC1

ω d = ω 0 2 − α 2 \omega_d = \sqrt{\omega_0^2 - \alpha^2} ωd=ω02α2

可以绘制如下曲线,只看 t > 0 的部分,可以观察到欠阻尼的响应曲线的形式。

欠阻尼

3. α = ω 0 \alpha = \omega_0 α=ω0,为临界阻尼 (Critically damped)

这种情况暂时还没搞明白,后边搞明白了再补充。

快速判断输出波形的方法

通过下面的方法,可以快速判断电容两端的波形

首先计算两个参数

波形的频率 ω d = ω 0 2 − α 2 波形的频率\quad \omega_d = \sqrt{\omega_0^2 - \alpha^2} 波形的频率ωd=ω02α2

品质因数 Q = ω 0 2 α 品质因数\quad Q = \frac{\omega_0}{2\alpha} 品质因数Q=2αω0

利用 T = 2 π ω d T = \frac{2\pi}{\omega_d} T=ωd2π 可以计算最终震荡的周期,品质因数 Q 表示震荡的周期个数,即震荡 Q 个波形后趋于电压VI。

LRC 理论验证

回忆一下实验中设定的参数:

  • 直流电压源电压 V I = 1.3 V V_I = 1.3V VI=1.3V
  • 电感 L = 3.7 m H L = 3.7mH L=3.7mH
  • 电容 C = 10 u F C = 10uF C=10uF

并且通过调整仿真结果,与实际结果波形对比,可以推测 电阻 R = 18 Ω R = 18\Omega R=18Ω

快速推断大概波形

带入上边的公式计算频率和品质因数如下:

ω d = 1 L C − ( R 2 L ) 2 \omega_d = \sqrt{\frac{1}{LC} - (\frac{R}{2L})^2} ωd=LC1(2LR)2

带入已知参数

ω d = 1 3.7 ∗ 1 0 − 3 ∗ 10 ∗ 1 0 − 6 − ( 18 2 ∗ 3.7 ∗ 1 0 − 3 ) 2 \begin{array}{c} \omega_d = \\ \sqrt{\frac{1}{3.7*10^{-3}*10*10^{-6}} \\- (\frac{18}{2*3.7*10^{-3}})^2} \end{array} ωd=3.7103101061(23.710318)2

解得

ω d = 4594.594 \omega_d = 4594.594 ωd=4594.594

可以进一步得到周期

T = 2 π ω d = 0.0013675 s = 1.3675 m s T = \frac{2\pi}{\omega_d} = 0.0013675s = 1.3675ms T=ωd2π=0.0013675s=1.3675ms

继续计算品质因数

Q = ω 0 2 α = 1 L C R L = 1 3.7 ∗ 1 0 − 3 ∗ 10 ∗ 1 0 − 6 18 3.7 ∗ 1 0 − 3 = 1.06863244 \begin{array}{l} Q = \frac{\omega_0}{2\alpha} \\ = \frac{\sqrt{\frac{1}{LC}}}{\frac{R}{L}} \\ = \frac{\sqrt{\frac{1}{3.7* 10^{-3} * 10 * 10^{-6}}}}{\frac{18}{3.7*10^{-3}}}\\ = 1.06863244 \end{array} Q=2αω0=LRLC1 =3.7103183.7103101061 =1.06863244

根据结果可以推断出,波形在震荡一个波形后收敛于输入电压 1.3v,并且波形的周期为 1.3675 毫秒。

精确计算

α = R 2 L = 18 2 ∗ 3.7 ∗ 1 0 − 3 = 2432.432 ω 0 = 1 L C = 1 3.7 ∗ 1 0 − 3 ∗ 10 ∗ 1 0 − 6 = 5198.75245 \begin{array}{c} \alpha = \frac{R}{2L} = \frac{18}{2*3.7*10^{-3}} = 2432.432 \\ \omega_0= \sqrt{\frac{1}{LC}} \\ = \sqrt{\frac{1}{3.7* 10^{-3} * 10 * 10^{-6}}} = 5198.75245 \end{array} α=2LR=23.710318=2432.432ω0=LC1 =3.7103101061 =5198.75245
ω d = ω 0 2 − α 2 = 4594.594 \omega_d = \sqrt{\omega_0^2 - \alpha^2} = 4594.594 ωd=ω02α2 =4594.594
α < ω 0 \alpha < \omega_0 α<ω0,为欠阻尼,带入公式

v ( t ) = V I − V I ω 0 ω d e − α t c o s ( ω d t − t a n − 1 α ω d ) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VIVIωdω0eαtcos(ωdttan1ωdα)

带入绘图可得

精确计算

LRC 电路仿真验证

通过修改仿真电路,增加电阻 R ,调整 R 的值,使仿真波形与实验结果一致,大概可以看出整个电路中的引入电阻大概为 18 欧,仿真结果与实际结果均与计算结果一致,震荡一个周期后收敛与 1.3v,周期为 1.3ms 左右。

LRC仿真结果

LRC实验结果

参考

麻省理工学院公开课——电路与电子学 p16.二阶系统上

https://www.bilibili.com/video/BV1ts411v7Ep?p=16

麻省理工学院公开课——电路与电子学 p17.二阶系统下

https://www.bilibili.com/video/BV1ts411v7Ep?p=17

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值