首先从简化的 LC (电感电容)串联电路入手,分析阶跃信号下,电容两端电压的变化情况,对 LC (电感电容)电路进行公式推导,并进行了理论情况下的计算与仿真,因电池有内阻,导线和电感也都有电阻,所以实际情况下电阻不能忽略,因此 LC 实际测试结果与仿真结果有差异,从而引出了 LRC (电感电阻电容)电路的分析和推导,并进行了仿真验证。
LC (电感电容)电路中电容两端电压变化的函数推导
LC(电感电容)电路如下。
已知条件
从图中可知:
电源电压
v
s
(
t
)
=
{
0
,
t
≤
0
V
I
,
t
>
0
v_s(t)= \begin{cases} 0,\quad t\leq 0 \\[2ex] V_I, \quad t>0 \end{cases}
vs(t)=⎩
⎨
⎧0,t≤0VI,t>0
电容两端初始电压
v
(
0
)
=
0
v(0) = 0
v(0)=0
电感两端初始电流
i
(
0
)
=
0
i(0) = 0
i(0)=0
待求的电容两端电压函数为 v(t)
前置知识
- 电容伏安特性: i = C d v d t i = C\frac{dv}{dt} i=Cdtdv
- 电感伏安特性: v = L d i d t v = L\frac{di}{dt} v=Ldtdi
- 电感伏安特性的积分形式:
1 L ∫ − ∞ t v d t = i \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v \mathrm{d} t \end{aligned} = i L1−∞∫tvdt=i
公式推导
根据节点法,流入节点电流等于流出节点的电流,有
1 L ∫ − ∞ t ( V I − v ( t ) ) d t = C d v ( t ) d t \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t (V_I - v(t)) \mathrm{d} t \end{aligned} = C\frac{d{v(t)}}{dt} L1−∞∫t(VI−v(t))dt=Cdtdv(t)
对方程两端进行对 t 求导
1 L ( V I − v ( t ) ) = C d 2 v ( t ) d t 2 \frac{1}{L}(V_I - v(t)) = C\frac{d^2{v(t)}}{dt^2} L1(VI−v(t))=Cdt2d2v(t)
移项整理得
L C d 2 v ( t ) d t 2 + v ( t ) = V I LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI
这里 L 、 C 、 V I L、 C、 V_I L、C、VI 都是已知常数,所以解上边这个二阶微分方程,就可以得到电容两端电压随时间变化的函数。
我们的目的是解出 v ( t ) v(t) v(t)
这里使用求特解加齐次解的方法解这个微分方程:
总的通解为特解+齐次解
v ( t ) = v p ( t ) + v h ( t ) v(t) = v_p(t) + v_h(t) v(t)=vp(t)+vh(t)
v p ( t ) v_{p}(t) vp(t) ,特解
v h ( t ) v_{h}(t) vh(t) ,齐次解
分为下面三个步骤:
- 找出特解
- 找出对应的齐次方程的通解
- 根据初始条件计算通解中的常数参数
1.找特解
L C d 2 v p ( t ) d t 2 + v p ( t ) = V I LC\frac{d^2{v_p(t)}}{dt^2} + v_p(t) = V_I LCdt2d2vp(t)+vp(t)=VI
尝试
v
p
(
t
)
=
V
I
v_p(t) = V_I
vp(t)=VI, 带入后满足方程,即
v
p
(
t
)
=
V
I
v_p(t) = V_I
vp(t)=VI
2.找齐次方程通解
首先,令方程右边为 0,
L C d 2 v ( t ) d t 2 + v ( t ) = V I LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI
得到对应的齐次方程:
L C d 2 v H ( t ) d t 2 + v H ( t ) = 0 LC\frac{d^2{v_H(t)}}{dt^2} + v_H(t) = 0 LCdt2d2vH(t)+vH(t)=0
设
v
H
(
t
)
=
A
e
s
t
v_H(t) = Ae^{st}
vH(t)=Aest,找到满足齐次方程的 A 和 s,即可得到齐次解,
将
v
H
(
t
)
=
A
e
s
t
v_H(t) = Ae^{st}
vH(t)=Aest带入上边的二阶微分方程:
L C A s 2 e s t + A e s t = 0 LCAs^2e^{st} + Ae^{st} = 0 LCAs2est+Aest=0
这里不需要 A = 0 的解,所以可以约掉 A e s t Ae^{st} Aest,化简为:
L C s 2 + 1 = 0 LCs^2 + 1 = 0 LCs2+1=0
得到特征方程
s 2 = − 1 L C s^2 = -\frac{1}{LC} s2=−LC1
开根号
s = ± j 1 L C s = \pm j\sqrt{\frac{1}{LC}} s=±jLC1
记 ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1
上式可以简化成
s = ± j ω 0 s = \pm j\omega_0 s=±jω0
根据二阶微分 L C d 2 v ( t ) d t 2 + v ( t ) = V I LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI ,可以看出 LC 的平方根的单位是时间,因此 ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1 是频率(时间的倒数)
因此,可以得到齐次方程的通解:
v H = A 1 e j ω 0 t + A 2 e − j ω 0 t v_H = A_1e^{j\omega_0t} + A_2e^{-j\omega_0t} vH=A1ejω0t+A2e−jω0t
其中
ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1
3.通过初始条件计算常数参数
现在得到了总的解
v = v P + v H v = v_P + v_H v=vP+vH
带入得
v = V I + A 1 e j ω 0 t + A 2 e − j ω 0 t v = V_I + A_1e^{j\omega_0t} + A_2e^{-j\omega_0t} v=VI+A1ejω0t+A2e−jω0t
其中
ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1
根据已知的初始条件 v C ( 0 ) = 0 v_C(0) = 0 vC(0)=0,即 v ( 0 ) = 0 v(0) = 0 v(0)=0
带入可得
0 = V I + A 1 + A 2 0 = V_I + A_1 + A_2 0=VI+A1+A2
根据另一个已知条件
i
L
(
0
)
=
0
i_L(0) = 0
iL(0)=0,因为:
i
=
C
d
v
d
t
i = C\frac{dv}{dt}
i=Cdtdv
所以,当 t = 0 时,有
0 = C A 1 j ω 0 e j ω 0 t + C A 2 ( − j ω 0 ) e − j ω 0 t 0 = CA_1j\omega_0e^{j\omega_0t} + CA_2(-j\omega_0)e^{-j\omega_0t} 0=CA1jω0ejω0t+CA2(−jω0)e−jω0t
消掉公共项,可得
0 = A 1 − A 2 0 = A_1 - A_2 0=A1−A2
即
A
1
=
A
2
A_1 = A_2
A1=A2
根据得到的方程组
{ A 1 = A 2 0 = V I + A 1 + A 2 \left\{ \begin{array}{c} A_1 = A_2 \\ 0 = V_I + A_1 + A_2 \end{array} \right. {A1=A20=VI+A1+A2
可以解得
A 1 = A 2 = − V I 2 A_1 = A_2 = -\frac{V_I}{2} A1=A2=−2VI
可以得到最终的 v(t) 的解为:
v ( t ) = V I − V I 2 ( e j ω 0 t + e − j ω 0 t ) v(t) = V_I - \frac{V_I}{2}(e^{j\omega_0t}+e^{-j\omega_0t}) v(t)=VI−2VI(ejω0t+e−jω0t)
根据欧拉公式 e j x = c o s x + j s i n x e^{jx} = cosx + jsinx ejx=cosx+jsinx,上式还可整理成如下形式:
v ( t ) = V I − V I c o s ( ω 0 t ) v(t) = V_I - V_Icos(\omega_0t) v(t)=VI−VIcos(ω0t)
到此,推导结束,可以得到电容两端的电压以及电流( C d v d t C\frac{dv}{dt} Cdtdv)随时间的变化关系:
v ( t ) = V I − V I c o s ( ω 0 t ) i ( t ) = C V I ω 0 s i n ( ω 0 t ) \left. \begin{array}{c} v(t) = V_I - V_Icos(\omega_0t) \\ i(t) = CV_I\omega_0sin(\omega_0t) \end{array} \right. v(t)=VI−VIcos(ω0t)i(t)=CVIω0sin(ω0t)
其中
ω 0 = 1 L C \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1
结果验证
取以下参数进行验证:
- 直流电压源电压 V I = 1.3 V V_I = 1.3V VI=1.3V
- 电感 L = 3.7 m H L = 3.7mH L=3.7mH
- 电容 C = 10 u F C = 10uF C=10uF
1. 数学函数曲线
将选取的参数值带入电容电压函数中,得到
v
=
1.3
−
1.3
∗
c
o
s
(
1
3.7
∗
1
0
−
3
∗
10
∗
1
0
−
6
∗
t
)
\left. \begin{array}{c} v = 1.3 - 1.3*\\ cos(\sqrt{\frac{1}{3.7*10^{-3} * 10*10^{-6}}}*t) \end{array} \right.
v=1.3−1.3∗cos(3.7∗10−3∗10∗10−61∗t)
绘制函数曲线如下
2. 仿真验证
根据选取的参数,在 LTspice 中进行仿真,与函数曲线结果一致,结果如下
3. 实验验证
搭建了实验电路进行实际测试,发现结果与理论计算及仿真结果不一致,实验过程如下
1.实验电路
下图为实验用到的元件及装置,使用了 1.3V (标称1.2v,实测1.3v) 的 7 号电池 作为直流源,标称值 10uF 的电容,以及标称值 3.7mH 的电感线圈。
2.实验结果
下图为示波器上升沿单次触发捕获的波形,可以看到波形与理论计算不一致。
3.问题分析
这里不一致是因为电路中各部分包含的电阻所导致,电池包含内阻,导线、电感线圈都具有一定的电阻值,所以实际电路中还有电阻的串联需要考虑进去,下面继续对 LRC (电感电阻电容串联)电路进行分析。
LRC 电路公式推导
构造电路模型
根据上面的分析,我们实际实验的电路等效模型如下图所示
列 LRC 二阶微分方程
利用节点法,在图中红色的节点 vA(t) 处,根据流入节点电流等于流出节点的电流,有:
1
L
∫
−
∞
t
(
v
I
(
t
)
−
v
A
(
t
)
)
d
t
=
v
A
(
t
)
−
v
(
t
)
R
\frac{1}{L}\int\limits_{-\infty}^t(v_I(t)-v_A(t)) \mathrm{d} t = \frac{v_A(t) - v(t)}{R}
L1−∞∫t(vI(t)−vA(t))dt=RvA(t)−v(t)
根据电阻电容间的节点可以写出如下:
v A ( t ) − v ( t ) R = C d v ( t ) d t \frac{v_A(t) - v(t)}{R}=C\frac{dv(t) }{dt} RvA(t)−v(t)=Cdtdv(t)
整理消元后得:
1 L ∫ − ∞ t ( v I ( t ) − C d v ( t ) d t R − v ( t ) ) d t = C d v ( t ) d t \begin{array}{c} \frac{1}{L}\int\limits_{-\infty}^t(v_I(t)-C\frac{dv(t) }{dt}R - v(t)) \mathrm{d} t\\ = C\frac{dv(t) }{dt} \end{array} L1−∞∫t(vI(t)−Cdtdv(t)R−v(t))dt=Cdtdv(t)
对两边对 t 进行微分:
L C d 2 v ( t ) d t 2 = v I ( t ) − C d v ( t ) d t R − v ( t ) LC\frac{d^2v(t)}{dt^2} = v_I(t) - C\frac{dv(t)}{dt}R - v(t) LCdt2d2v(t)=vI(t)−Cdtdv(t)R−v(t)
移项并整理得:
d 2 v ( t ) d t 2 + R L d v ( t ) d t + 1 L C v ( t ) = v I ( t ) L C \frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{v_I(t)}{LC} dt2d2v(t)+LRdtdv(t)+LC1v(t)=LCvI(t)
这就是我们要解的 LRC 电路的二阶微分方程。
解 LRC二阶微分方程
设电压源输入信号为阶跃信号:
v
I
(
t
)
=
{
0
,
t
≤
0
V
I
,
t
>
0
v_I(t)= \begin{cases} 0,\quad t\leq 0 \\[2ex] V_I, \quad t>0 \end{cases}
vI(t)=⎩
⎨
⎧0,t≤0VI,t>0
初始条件为电容初始电压等于 0v, 电感初始电流等于 0A:
v ( 0 ) = 0 , i ( 0 ) = 0 v(0) = 0,\quad i(0) = 0 v(0)=0,i(0)=0
总的通解为特解+齐次解
v ( t ) = v p ( t ) + v h ( t ) v(t) = v_p(t) + v_h(t) v(t)=vp(t)+vh(t)
v p ( t ) v_{p}(t) vp(t) ,特解
v h ( t ) v_{h}(t) vh(t) ,齐次解
再次列出我们一直用的方法步骤:
- 找出特解 vp(t)
- 找出对应的齐次方程的通解 vh(t)
- 根据初始条件计算通解中的常数参数
1. 找特解 vp
d 2 v p ( t ) d t 2 + R L d v p ( t ) d t + 1 L C v p ( t ) = V I L C \frac{d^2v_p(t)}{dt^2} + \frac{R}{L}\frac{dv_p(t)}{dt} + \frac{1}{LC}v_p(t) = \frac{V_I}{LC} dt2d2vp(t)+LRdtdvp(t)+LC1vp(t)=LCVI
尝试
v
p
(
t
)
=
V
I
v_p(t) = V_I
vp(t)=VI, 带入后等式成立,所以可以得到一个特解:
v
p
=
V
I
v_p = V_I
vp=VI
2. 找齐次解 vh
d 2 v h ( t ) d t 2 + R L d v h ( t ) d t + 1 L C v h ( t ) = 0 \frac{d^2v_h(t)}{dt^2} + \frac{R}{L}\frac{dv_h(t)}{dt} + \frac{1}{LC}v_h(t) = 0 dt2d2vh(t)+LRdtdvh(t)+LC1vh(t)=0
尝试 v h ( t ) = A e s t v_h(t) = Ae^{st} vh(t)=Aest 的形式,代入对应的齐次方程有:
A s 2 e s t + R L A s e s t + 1 L C A e s t = 0 As^2e^{st} + \frac{R}{L}Ase^{st} + \frac{1}{LC}Ae^{st} = 0 As2est+LRAsest+LC1Aest=0
舍掉 A = 0 的情况,并约掉相同项,化简得到特征方程
s 2 + R L s + 1 L C = 0 s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 s2+LRs+LC1=0
引入新的符号简记方程,令
2 α = R L 2\alpha = \frac{R}{L} 2α=LR
ω 0 = 1 L C \omega_0= \sqrt{\frac{1}{LC}} ω0=LC1
特征方程对应的表示为
s 2 + 2 α s + ω 0 2 = 0 s^2 + 2\alpha s + \omega_0^2 = 0 s2+2αs+ω02=0
解得:
s 1 = − α + α 2 − ω 0 2 s 2 = − α − α 2 − ω 0 2 \begin{array}{c} s_1= -\alpha + \sqrt{\alpha^2-\omega_0^2} \\ s_2= -\alpha - \sqrt{\alpha^2-\omega_0^2} \end{array} s1=−α+α2−ω02s2=−α−α2−ω02
可以的到齐次解为:
v h ( t ) = A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v_h(t) = A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} vh(t)=A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t
3. 根据初始条件计算未知常数
现在可以计算总的解为:
v ( t ) = V I + A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t
根据初始条件:
v ( 0 ) = 0 v(0) = 0 v(0)=0
可得
0
=
V
I
+
A
1
+
A
2
0 = V_I + A_1 + A_2
0=VI+A1+A2
根据初始条件:
i ( 0 ) = 0 i(0) = 0 i(0)=0
以及电流方程:
i ( t ) = C d v d t = C A 1 ( − α + α 2 − ω 0 2 ) e ( − α + α 2 − ω 0 2 ) t + C A 2 ( − α − α 2 − ω 0 2 ) e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} i(t) = C\frac{dv}{dt} \\ = CA_1(-\alpha + \sqrt{\alpha^2-\omega_0^2})e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ CA_2(-\alpha - \sqrt{\alpha^2-\omega_0^2})e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} i(t)=Cdtdv=CA1(−α+α2−ω02)e(−α+α2−ω02)t+CA2(−α−α2−ω02)e(−α−α2−ω02)t
可得:
0 = A 1 ( − α + α 2 − ω 0 2 ) + A 2 ( − α − α 2 − ω 0 2 ) \begin{array}{c} 0 = A_1(-\alpha + \sqrt{\alpha^2-\omega_0^2}) + \\ A_2(-\alpha - \sqrt{\alpha^2-\omega_0^2}) \end{array} 0=A1(−α+α2−ω02)+A2(−α−α2−ω02)
联立方程:
0
=
V
I
+
A
1
+
A
2
0 = V_I + A_1 + A_2
0=VI+A1+A2
及
0
=
A
1
(
−
α
+
α
2
−
ω
0
2
)
+
A
2
(
−
α
−
α
2
−
ω
0
2
)
\begin{array}{c} 0 = A_1(-\alpha + \sqrt{\alpha^2-\omega_0^2}) + \\ A_2(-\alpha - \sqrt{\alpha^2-\omega_0^2}) \end{array}
0=A1(−α+α2−ω02)+A2(−α−α2−ω02)
可得最终的总解为:
v ( t ) = V I + A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t
其中,当 α 2 − ω 0 2 ≠ 0 \alpha^2-\omega_0^2 \neq 0 α2−ω02=0 时,
A 1 = V I ( α + α 2 − ω 0 2 ) − 2 α 2 − ω 0 2 A 2 = V I ( − α + α 2 − ω 0 2 ) − 2 α 2 − ω 0 2 \begin{array}{c} A_1 = \frac{V_I(\alpha + \sqrt{\alpha^2-\omega_0^2})}{-2\sqrt{\alpha^2-\omega_0^2}} \\ A_2 = \frac{V_I(-\alpha + \sqrt{\alpha^2-\omega_0^2})}{-2\sqrt{\alpha^2-\omega_0^2}} \end{array} A1=−2α2−ω02VI(α+α2−ω02)A2=−2α2−ω02VI(−α+α2−ω02)
当 α 2 − ω 0 2 = 0 \alpha^2-\omega_0^2 = 0 α2−ω02=0 时,对应后面临界阻尼的情况。
分情况讨论
根据 α 2 − ω 0 2 \alpha^2 - \omega_0^2 α2−ω02 的正负关系,可以分三种情况讨论:
1. α > ω 0 \alpha > \omega_0 α>ω0,为过阻尼 (Overdamped)
此时 α 2 − ω 0 2 \sqrt{\alpha^2 - \omega_0^2} α2−ω02 为实数,v(t) 可以简化为下面这个形式:
v ( t ) = V I + A 1 e − α 1 t + A 2 e − α 2 t v(t) = V_I + A_1e^{-\alpha_1t} + A_2e^{-\alpha_2t} v(t)=VI+A1e−α1t+A2e−α2t
可以绘制如下曲线,只看 t > 0 的部分,可以观察到过阻尼的响应曲线的形式。
2. α < ω 0 \alpha < \omega_0 α<ω0,为欠阻尼 (Underdamped)
原式如下
v ( t ) = V I + A 1 e ( − α + α 2 − ω 0 2 ) t + A 2 e ( − α − α 2 − ω 0 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t
因为 $ \alpha2-\omega_02 < 0 $,所以在根号里可以提取出 -1, 原式可以化简为:
v ( t ) = V I + A 1 e − α t e ( j ω 0 2 − α 2 ) t + A 2 e − α t e ( − j ω 0 2 − α 2 ) t \begin{array}{c} v(t) = V_I + A_1e^{-\alpha t}e^{(j\sqrt{\omega_0^2-\alpha^2})t} + \\ A_2e^{-\alpha t}e^{(-j\sqrt{\omega_0^2-\alpha^2})t} \end{array} v(t)=VI+A1e−αte(jω02−α2)t+A2e−αte(−jω02−α2)t
为了简化方程,引入新的参数标记:
ω d = ω 0 2 − α 2 \omega_d = \sqrt{\omega_0^2 - \alpha^2} ωd=ω02−α2
则可简记为
v ( t ) = V I + A 1 e − α t e j w d t + A 2 e − α t e − j w d t v(t) = V_I + A_1e^{-\alpha t}e^{jw_dt} + A_2e^{-\alpha t}e^{-jw_dt} v(t)=VI+A1e−αtejwdt+A2e−αte−jwdt
根据欧拉公式:
e j ω d t = c o s ( ω d t ) + j s i n ( ω d t ) e^{j\omega_dt} = cos(\omega_dt) + jsin(\omega_dt) ejωdt=cos(ωdt)+jsin(ωdt)
可以进一步化简
v ( t ) = V I + K 1 e − α t c o s ( ω d t ) + K 2 e − α t s i n ( ω d t ) \begin{array}{c} v(t) = V_I + K_1e^{-\alpha t}cos(\omega_dt) +\\ K_2e^{-\alpha t}sin(\omega_dt) \end{array} v(t)=VI+K1e−αtcos(ωdt)+K2e−αtsin(ωdt)
其中
K 1 = A 1 + A 2 , K 2 = ( A 1 − A 2 ) j K_1 = A_1 + A_2, K_2 = (A_1 - A_2)j K1=A1+A2,K2=(A1−A2)j
根据初始条件: v ( 0 ) = 0 v(0) = 0 v(0)=0,可以推出 K 1 = − V I K_1 = -V_I K1=−VI
又因为:
i ( t ) = C d v d t = − C K 1 α e − α t c o s ( ω d t ) − C K 1 ω d e − α t s i n ( ω d t ) − C K 2 α e − α t s i n ( ω d t ) + C K 2 ω d e − α t c o s ( ω d t ) \begin{array}{c} i(t) = C\frac{dv}{dt} \\ = -CK_1\alpha e^{-\alpha t}cos(\omega_dt)-\\ CK_1\omega_d e^{-\alpha t}sin(\omega_dt)-\\ CK_2\alpha e^{-\alpha t}sin(\omega_dt) + \\ CK_2\omega_d e^{-\alpha t}cos(\omega_dt) \end{array} i(t)=Cdtdv=−CK1αe−αtcos(ωdt)−CK1ωde−αtsin(ωdt)−CK2αe−αtsin(ωdt)+CK2ωde−αtcos(ωdt)
带入初始条件: i ( 0 ) = 0 i(0) = 0 i(0)=0,可得:
0 = − K 1 α + K 2 ω d K 2 = − V I α ω d \begin{array}{c} 0 = -K_1\alpha + K_2\omega_d \\ K_2 = -\frac{V_I\alpha}{\omega_d} \end{array} 0=−K1α+K2ωdK2=−ωdVIα
将得到的 K1, K2 带入可得
v ( t ) = V I − V I e − α t c o s ( ω d t ) − V I α ω d e − α t s i n ( ω d t ) \begin{array}{c} v(t) = V_I - V_Ie^{-\alpha t}cos(\omega_dt) -\\ V_I\frac{\alpha}{\omega_d}e^{-\alpha t}sin(\omega_dt) \end{array} v(t)=VI−VIe−αtcos(ωdt)−VIωdαe−αtsin(ωdt)
根据以下公式可知,同频率不同幅度的正余弦函数相加,可以写成一个正弦或者余弦的形式,如下:
A
1
c
o
s
(
θ
)
+
A
2
s
i
n
(
θ
)
=
A
1
2
+
A
2
2
c
o
s
(
θ
−
t
a
n
−
1
(
A
2
A
1
)
)
=
A
1
2
+
A
2
2
s
i
n
(
θ
+
t
a
n
−
1
(
A
1
A
2
)
)
\begin{array}{c} A_1cos(\theta) + A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}cos(\theta-tan^{-1}(\frac{A_2}{A_1}))\\ =\sqrt{A_1^2+A_2^2}sin(\theta+tan^{-1}(\frac{A_1}{A_2})) \end{array}
A1cos(θ)+A2sin(θ)=A12+A22cos(θ−tan−1(A1A2))=A12+A22sin(θ+tan−1(A2A1))
A 1 c o s ( θ ) − A 2 s i n ( θ ) = A 1 2 + A 2 2 c o s ( θ + t a n − 1 ( A 2 A 1 ) ) = A 1 2 + A 2 2 s i n ( θ − t a n − 1 ( A 1 A 2 ) ) \begin{array}{c} A_1cos(\theta) - A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}cos(\theta+tan^{-1}(\frac{A_2}{A_1}))\\ =\sqrt{A_1^2+A_2^2}sin(\theta-tan^{-1}(\frac{A_1}{A_2})) \end{array} A1cos(θ)−A2sin(θ)=A12+A22cos(θ+tan−1(A1A2))=A12+A22sin(θ−tan−1(A2A1))
可以把 v(t) 化简为一个余弦的形式
v ( t ) = V I − V I ω 0 ω d e − α t c o s ( ω d t − t a n − 1 α ω d ) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VI−VIωdω0e−αtcos(ωdt−tan−1ωdα)
最终得到欠阻尼条件下 LRC 电路电容两端电压的表达式为:
v ( t ) = V I − V I ω 0 ω d e − α t c o s ( ω d t − t a n − 1 α ω d ) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VI−VIωdω0e−αtcos(ωdt−tan−1ωdα)
其中,
α = R 2 L \alpha = \frac{R}{2L} α=2LR
ω 0 = 1 L C \omega_0= \sqrt{\frac{1}{LC}} ω0=LC1
ω d = ω 0 2 − α 2 \omega_d = \sqrt{\omega_0^2 - \alpha^2} ωd=ω02−α2
可以绘制如下曲线,只看 t > 0 的部分,可以观察到欠阻尼的响应曲线的形式。
3. α = ω 0 \alpha = \omega_0 α=ω0,为临界阻尼 (Critically damped)
这种情况暂时还没搞明白,后边搞明白了再补充。
快速判断输出波形的方法
通过下面的方法,可以快速判断电容两端的波形
首先计算两个参数
波形的频率 ω d = ω 0 2 − α 2 波形的频率\quad \omega_d = \sqrt{\omega_0^2 - \alpha^2} 波形的频率ωd=ω02−α2
品质因数 Q = ω 0 2 α 品质因数\quad Q = \frac{\omega_0}{2\alpha} 品质因数Q=2αω0
利用 T = 2 π ω d T = \frac{2\pi}{\omega_d} T=ωd2π 可以计算最终震荡的周期,品质因数 Q 表示震荡的周期个数,即震荡 Q 个波形后趋于电压VI。
LRC 理论验证
回忆一下实验中设定的参数:
- 直流电压源电压 V I = 1.3 V V_I = 1.3V VI=1.3V
- 电感 L = 3.7 m H L = 3.7mH L=3.7mH
- 电容 C = 10 u F C = 10uF C=10uF
并且通过调整仿真结果,与实际结果波形对比,可以推测 电阻 R = 18 Ω R = 18\Omega R=18Ω。
快速推断大概波形
带入上边的公式计算频率和品质因数如下:
ω d = 1 L C − ( R 2 L ) 2 \omega_d = \sqrt{\frac{1}{LC} - (\frac{R}{2L})^2} ωd=LC1−(2LR)2
带入已知参数
ω d = 1 3.7 ∗ 1 0 − 3 ∗ 10 ∗ 1 0 − 6 − ( 18 2 ∗ 3.7 ∗ 1 0 − 3 ) 2 \begin{array}{c} \omega_d = \\ \sqrt{\frac{1}{3.7*10^{-3}*10*10^{-6}} \\- (\frac{18}{2*3.7*10^{-3}})^2} \end{array} ωd=3.7∗10−3∗10∗10−61−(2∗3.7∗10−318)2
解得
ω d = 4594.594 \omega_d = 4594.594 ωd=4594.594
可以进一步得到周期
T = 2 π ω d = 0.0013675 s = 1.3675 m s T = \frac{2\pi}{\omega_d} = 0.0013675s = 1.3675ms T=ωd2π=0.0013675s=1.3675ms
继续计算品质因数
Q = ω 0 2 α = 1 L C R L = 1 3.7 ∗ 1 0 − 3 ∗ 10 ∗ 1 0 − 6 18 3.7 ∗ 1 0 − 3 = 1.06863244 \begin{array}{l} Q = \frac{\omega_0}{2\alpha} \\ = \frac{\sqrt{\frac{1}{LC}}}{\frac{R}{L}} \\ = \frac{\sqrt{\frac{1}{3.7* 10^{-3} * 10 * 10^{-6}}}}{\frac{18}{3.7*10^{-3}}}\\ = 1.06863244 \end{array} Q=2αω0=LRLC1=3.7∗10−3183.7∗10−3∗10∗10−61=1.06863244
根据结果可以推断出,波形在震荡一个波形后收敛于输入电压 1.3v,并且波形的周期为 1.3675 毫秒。
精确计算
α
=
R
2
L
=
18
2
∗
3.7
∗
1
0
−
3
=
2432.432
ω
0
=
1
L
C
=
1
3.7
∗
1
0
−
3
∗
10
∗
1
0
−
6
=
5198.75245
\begin{array}{c} \alpha = \frac{R}{2L} = \frac{18}{2*3.7*10^{-3}} = 2432.432 \\ \omega_0= \sqrt{\frac{1}{LC}} \\ = \sqrt{\frac{1}{3.7* 10^{-3} * 10 * 10^{-6}}} = 5198.75245 \end{array}
α=2LR=2∗3.7∗10−318=2432.432ω0=LC1=3.7∗10−3∗10∗10−61=5198.75245
ω
d
=
ω
0
2
−
α
2
=
4594.594
\omega_d = \sqrt{\omega_0^2 - \alpha^2} = 4594.594
ωd=ω02−α2=4594.594
α
<
ω
0
\alpha < \omega_0
α<ω0,为欠阻尼,带入公式
v ( t ) = V I − V I ω 0 ω d e − α t c o s ( ω d t − t a n − 1 α ω d ) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VI−VIωdω0e−αtcos(ωdt−tan−1ωdα)
带入绘图可得
LRC 电路仿真验证
通过修改仿真电路,增加电阻 R ,调整 R 的值,使仿真波形与实验结果一致,大概可以看出整个电路中的引入电阻大概为 18 欧,仿真结果与实际结果均与计算结果一致,震荡一个周期后收敛与 1.3v,周期为 1.3ms 左右。
参考
麻省理工学院公开课——电路与电子学 p16.二阶系统上
https://www.bilibili.com/video/BV1ts411v7Ep?p=16
麻省理工学院公开课——电路与电子学 p17.二阶系统下
https://www.bilibili.com/video/BV1ts411v7Ep?p=17