路径签名Path Signature的一些总结

路径签名是一条路径的特征,可以作为路径本身输入神经网络等。 常常用于机器学习或时间序列分析等领域中,也是粗糙路径理论的输出(Rough Path Theory,这个理论主要是针对粗糙路径做特征提取,粗糙指的是路径虽然连续但是 变化巨大抖动厉害)。

路径Path

二维欧氏空间中的路径,可以定义:
{ X 1 = cos ⁡ ( t ) X 2 = sin ⁡ ( t ) , t ∈ [ 0 , 2 π ] \begin{cases} X^1=\cos(t) \\ X^2=\sin(t), t \in [0,2\pi] \\ \end{cases} {X1=cos(t)X2=sin(t),t[0,2π]这条路径是一个圆心为(0,0),起始点为(1,0)的逆时针的圆,如下图所示。在这里插入图片描述
定义N维欧氏空间上的路径为:
X : { X 1 = f 1 ( t ) X 2 = f 2 ( t ) , . . . X N = f N ( t ) , t ∈ [ a , b ] X: \begin{cases} X^1=f^1(t) \\ X^2=f^2(t), \\ ...\\ X^N=f^N(t), t \in [a,b] \\ \end{cases} XX1=f1(t)X2=f2(t),...XN=fN(t),t[a,b]
X : [ a , b ] → R N X:[a,b] \to \mathbb{R}^N X[a,b]RN, 这条路径需要满足分段可导 ( piecewise differentiable)且处处连续。注意 的是, 在粗糙路径理论中, 布朗运动的路径是处处连续,但处处不可微分。

路径签名项

有了路径,我们如何对路径进行计算?先从一阶路径签名项开始。

对于路径 X : [ a , b ] → R N X:[a,b] \to \mathbb{R}^N X[a,b]RN来说,一阶路径签名项有 N N N个,对应着 N N N个维度。其定义为:
S ( X ) a , b i = ∫ X d X i = ∫ a b d ( f i ( t ) ) = f i ( b ) − f i ( a ) . S(X)^i_{a,b} = \int_X \mathrm{d}X^i = \int_a^b \mathrm{d}(f^i(t)) = f^i(b) - f^i(a). S(X)a,bi=XdXi=abd(fi(t))=fi(b)fi(a).
一阶路径签名项 相当于 路径 X X X i i i维度上的投影距离。此外,一阶路径签名项 可以随时在 t t t处截断,即变成了与 t t t相关的函数,即,
S ( X ) a , t i = ∫ a t d X s i = ∫ a t d ( f i ( t ) ) = f i ( t ) − f i ( a ) . S(X)^i_{a,t} = \int_a^t \mathrm{d}X_s^i = \int_a^t \mathrm{d}(f^i(t)) = f^i(t) - f^i(a). S(X)a,ti=atdXsi=atd(fi(t))=fi(t)fi(a).

接下来,看看二阶路径签名项。二阶路径签名项有 N × N N\times N N×N个。签名编号 变成了 有序对 ( i , j ) , ∀ i , j ∈ 1 , 2 , . . , N (i,j), \forall i,j \in 1,2,..,N (i,j),i,j1,2,..,N:
S ( X ) a , t i , j = ∫ a t S ( X ) a , s i d X s j = ∫ a t ( ∫ a s d X r i ) d X s j = ∫ a < r < s < t d X r i d X s j . S(X)^{i,j}_{a,t} = \int_a^t S(X)^i_{a,s} \mathrm{d}X^j_s = \int_a^t ( \int_a^s \mathrm{d}X_r^i ) \mathrm{d}X^j_s \\= \int_{a<r<s<t} \mathrm{d}X_r^i \mathrm{d}X_s^j . S(X)a,ti,j=atS(X)a,sidXsj=at(asdXri)dXsj=a<r<s<tdXridXsj.

值得注意的是,二重积分有一个重要定理:
S ( X ) i , j + S ( X ) j , i = S ( X ) i S ( X ) j , ∀ i , j ∈ 1 , 2 , . . . , N . S(X)^{i,j} + S(X)^{j,i} = S(X)^{i} S(X)^{j}, \\ \forall i,j \in 1,2,...,N. S(X)i,j+S(X)j,i=S(X)iS(X)j,i,j1,2,...,N.证明:
S ( X ) i S ( X ) j = ( ∫ X d X i ) ( ∫ X d X j ) = ∫ u 1 , u 2 ∈ [ a , , b ] d X u 1 i d X u 2 j = = ∫ a < u 1 < u 2 < b d X u 1 i d X u 2 j + ∫ a < u 2 < u 1 < b d X u 1 i d X u 2 j S(X)^{i} S(X)^{j} = ( \int_X \mathrm{d}X^i ) ( \int_X \mathrm{d}X^j ) \\= \int_{u_1,u_2\in [a,,b]} \mathrm{d}X^{i}_{u_1} \mathrm{d}X^{j}_{u_2}\\== \int_{a<u_1<u_2<b} \mathrm{d}X^{i}_{u_1} \mathrm{d}X^{j}_{u_2} + \int_{a<u_2<u_1<b} \mathrm{d}X^{i}_{u_1} \mathrm{d}X^{j}_{u_2} S(X)iS(X)j=(XdXi)(XdXj)=u1,u2[a,,b]dXu1idXu2j==a<u1<u2<bdXu1idXu2j+a<u2<u1<bdXu1idXu2j

以此类推,N阶路径签名项的定义为:
S ( X ) a , t i 1 , i 2 , . . . , i N = ∫ a < u 1 < u 2 < . . . < u N < t . . . ∫ d X u 1 i 1 . . . d X u N i N . S(X)^{i_1, i_2,..., i_N}_{a,t} = \int_{a<u_1<u_2<... <u_N<t} ... \int \mathrm{d}X_{u_1}^{i_1} ... \mathrm{d}X_{u_N}^{i_N}. S(X)a,ti1,i2,...,iN=a<u1<u2<...<uN<t...dXu1i1...dXuNiN.

路径签名

路径签名是路径 X : [ a , b ] → R N X:[a,b] \to \mathbb{R}^N X[a,b]RN的一个 无限长的序列,由1(零阶签名项)和各个阶次的签名项(或叫做迭代积分iterated integrals)组成:
S ( X ) a , b = ( 1 , S ( X ) a , b 1 , . . . , S ( X ) a , b N , S ( X ) a , b 1 , 1 , S ( X ) a , b 1 , 2 , . . . . ) S(X)_{a,b} = (1, S(X)^1_{a,b}, ..., S(X)^N_{a,b}, S(X)^{1,1}_{a,b}, S(X)^{1,2}_{a,b},....) S(X)a,b=(1,S(X)a,b1,...,S(X)a,bN,S(X)a,b1,1,S(X)a,b1,2,....)
由于路径签名是无限长的序列,不好用,于是常常取序列中的 N N N阶及其 N N N阶以前的签名项,作为代表。这个新的序列叫做 N N N阶截断路径签名。

The signature has the following important properties [2]:

  • it is independent of the parametrization of the path; 也就是说,对时间进行重参数化后,路径的签名保持不变。这里的重参数化值得是 对时间t 做一个 函数映射 Φ : [ a , b ] → [ a , b ] \Phi:[a,b] \to[a,b] Φ[a,b][a,b].
  • it is independent of starting point of the path, 也就是间距中的a. 比如: if for some x ∈ R d x \in \mathbb{R}^d xRd,we define the path X ~ = X + x \tilde{X} = X + x X~=X+x, then S ( X ~ ) a , b i 1 , i 2 , . . . , i k = S ( X ) a , b i 1 , i 2 , . . . , i k S(\tilde{X})^{i_1, i_2,..., i_k}_{a,b} = S({X})^{i_1, i_2,..., i_k}_{a,b} S(X~)a,bi1,i2,...,ik=S(X)a,bi1,i2,...,ik
  • shuffle product. 两项签名的乘积 可以表示为 更高签名项的线性表达的形式。形式化,可以表示为如下的定义与定理。
    定义:
  • time-reversal: 有点类似倒数的定义。只是这里的reversal针对的是 时间。具体为: 定义路径 X : [ a , b ] → R N X:[a,b] \to \mathbb{R}^N X[a,b]RN的time-reversal为 X ← : [ a , b ] → R N \overleftarrow{X}: [a,b] \to\mathbb{R}^N X [a,b]RN for which X ← = X a + b − t \overleftarrow{X} = X_{a+b-t} X =Xa+bt for all t ∈ [ a , b ] t \in [a,b] t[a,b]. 于是, S ( X ) a , b ⊗ S ( X ← ) a , b = 1. S(X)_{a,b} \otimes S(\overleftarrow{X})_{a,b} = 1. S(X)a,bS(X )a,b=1.成立。
  • Chen’s Identity.

其他

one of 的第一个研究 签名signature 的人,是K.T Chen. His primary results can be stated completely in terms of piecewise smooth paths, which already provide an elegant and deep mathematical theory. 再者是professor Terry Lyons,他也算是较早提出路径签名的学者[1][2]。学习PS资源,如下图[2]。
在这里插入图片描述
参考文献:
[1] https://youtu.be/q7P8srVENnQ
[2] https://zhy0.com/signature-visualizer/
[3] A Primer on the Signature Method in Machine Learning https://arxiv.org/pdf/1603.03788.pdf

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值