机器学习作为新兴领域,已经逐渐渗透进我们的生活之中。不论是在传统地学、定量遥感、还是遥感图像分类和目标识别中,机器学习都有着极为广泛的应用。然而机器学习方法的多样化也令人很难评判方法的优劣,针对不同的应用场景,不用方法也表现出差异。因此,本文将对随机森林、支持向量机、K最邻近回归和广义线性回归为例,以相同的测试数据来评价上述四种机器学习方法的优劣,并使用R2(决定系数)、RMSE(均方根误差)、MAE(平均绝对误差)和bias(偏差)来做性能评价。
预测及评价过程均基于Python3和机器学习扩展模块sklearn实现,具体实现如下:
- 导入相关扩展包
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn import svm
from sklearn import metrics
- 数据导入
df = pd.DataFrame(pd.read_csv("testpoint.csv"))
x = df.iloc[:, 0:-1].values
y = df.iloc[:, 3].values
其中测试数据格式如下:
- 训练数据选择
由于测试数据量较大,这里为了节省训练时间,选择其中10%作为训练集。
x_train, x_test, y_train, y_test = train_test_split(X,y,test_size=0.1,random_state=None)
- 训练并预测结果
# 归一化测试数据
sc = StandardScaler()
x_train = sc.fit_transform(X_train)
x_test = sc.transform(X_test)
# 导入模型并设置参数
rf = RandomForestRegressor(n_estimators=100, random_state=None, max_features='auto', max_depth=5,min_samples_split=15, min_samples_leaf=8, bootstrap=True, oob_score=True)
sr = svm.SVR(kernel='rbf', C=1000, gamma=0.1)
kn = KNeighborsRegressor(n_neighbors=10, weights='distance',algorithm='ball_tree')
lr = LinearRegression()
np.set_printoptions(threshold=np.inf)
# 模型训练
rf.fit(X_train, y_train)
sr.fit(X_train, y_train)
kn.fit(X_train, y_train)
lr.fit(X_train, y_train)
# 结果预测
y_pred_rf = rf.predict(X_test)
y_pred_sr = sr.predict(X_test)
y_pred_kn = kn.predict(X_test)
y_pred_lr = lr.predict(X_test)
- 计算预测性能
在得到预测结果之后,我们利用预测值和真实值来计算各模型的预测性能,具体实现如下:
R2 = [metrics.r2_score(y_test, y_pred_rf), metrics.r2_score(y_test, y_pred_sr),
metrics.r2_score(y_test, y_pred_kn), metrics.r2_score(y_test, y_pred_lr)]
RMSE = [np.sqrt(metrics.mean_squared_error(y_test, y_pred_rf)),
np.sqrt(metrics.mean_squared_error(y_test, y_pred_sr)),
np.sqrt(metrics.mean_squared_error(y_test, y_pred_kn)),
np.sqrt(metrics.mean_squared_error(y_test, y_pred_lr))]
MAE = [metrics.mean_absolute_error(y_test, y_pred_rf),
metrics.mean_absolute_error(y_test,
y_pred_sr),metrics.mean_absolute_error(y_test, y_pred_kn),
metrics.mean_absolute_error(y_test, y_pred_lr)]
BIAS = [np.mean(y_pred_rf - y_test), np.mean(y_pred_sr - y_test),
np.mean(y_pred_kn - y_test),np.mean(y_pred_lr - y_test)]
在得到每个测试数据的评价结果后,计算其平均值和标准差,得到最终的评价结果,具体操作如下:
# 计算平均值
r2_mean = np.mean(r2, axis=0)
rmse_mean = np.mean(rmse, axis=0)
mae_mean = np.mean(mae, axis=0)
bias_mean = np.mean(bias, axis=0)
# 计算标准差
r2_std = np.std(r2, axis=0)
rmse_std = np.std(rmse, axis=0)
mae_std = np.std(mae, axis=0)
bias_std = np.std(bias, axis=0)
- 评价结果
在评价结果计算后,数据结果:
如何选择机器学习算法、选择哪一个算法以及算法建模时该注意哪些问题,是学术及工程中的一大难题。总之,选择哪一个算法必须要适用于你自己的问题,这就要求选择正确的机器学习任务。但很多情况下好的数据却要优于好的算法,优良特征的正确选择对算法来说更有意义,但只有了解每个机器算法的原理及优缺点,才能根据不同的机器学习算法做相应的特征选择。