轮廓周围绘制矩形框和圆形框

本文介绍了在图像处理中如何利用算法找到物体轮廓,并在轮廓周围精准地绘制矩形和圆形框。通过示例代码详细阐述了实现这一功能的步骤和技术要点,包括边缘检测、轮廓查找以及轮廓包围盒的计算。
摘要由CSDN通过智能技术生成
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
#include <opencv2\imgproc\types_c.h>

using namespace std;
using namespace cv;
Mat src, gray_src, drawImg;
int threshold_v = 170;
int threshold_max = 255;
const char* output_win = "rectangle-demo";
RNG rng(12345);
void Contours_Callback(int, void*);
int main(int argc, char** argv) {
	src = imread("D:\\test.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, gray_src, CV_BGR2GRAY);//变成灰度图像
	blur(gray_src, gray_src, Size(3, 3), Point(-1, -1));//均值模糊

	const char* source_win = "input image";
	namedWindow(source_win, WINDOW_AUTOSIZE);
	namedWindow(output_win, WINDOW_AUTOSIZE);
	imshow(source_win, src);

	createTrackbar("Threshold Value:", output_win, &threshold_v, threshold_max, Contours_Callback);//创建滑动条
	Contours_Callback(0, 0);

	waitKey(0);
	return 0;
}

void Contours_Callback(int, void*) {
	Mat binary_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	threshold(gray_src, binary_output, threshold_v, threshold_max, THRESH_BINARY);//二值图像
	//imshow("binary image", binary_output);
	findContours(binary_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(-1, -1));//找轮廓

	vector<vector<Point>> contours_ploy(contours.size());
	vector<Rect> ploy_rects(contours.size());
	vector<Point2f> ccs(contours.size());
	vector<float> radius(contours.size());

	vector<RotatedRect> minRects(contours.size());
	vector<RotatedRect> myellipse(contours.size());

	//approxPolyDP(InputArray  curve, OutputArray approxCurve, double  epsilon, bool  closed)基于RDP算法实现, 目的是减少多边形轮廓点数
	//cv::boundingRect(InputArray points)得到轮廓周围最小矩形左上交点坐标和右下角点坐标,绘制一个矩形
	//cv::minAreaRect(InputArray  points)得到一个旋转的矩形,返回旋转矩形
		//找到最小包含矩形和圆,旋转矩形与椭圆。
	/*cv::minEnclosingCircle(InputArray points, //得到最小区域圆形
		Point2f& center, // 圆心位置
		float& radius)// 圆的半径
		cv::fitEllipse(InputArray  points)得到最小椭圆
	*/
	for (size_t i = 0; i < contours.size(); i++) {
		approxPolyDP(Mat(contours[i]), contours_ploy[i], 3, true);//减少多边形轮廓点数
		ploy_rects[i] = boundingRect(contours_ploy[i]);//得到轮廓周围最小矩形左上交点坐标和右下角点坐标,绘制一个矩形
		minEnclosingCircle(contours_ploy[i], ccs[i], radius[i]);//得到最小区域圆形
		if (contours_ploy[i].size() > 5) {//点数大于5才绘制出来
			myellipse[i] = fitEllipse(contours_ploy[i]);//得到最小椭圆
			minRects[i] = minAreaRect(contours_ploy[i]);//得到一个旋转的矩形,返回旋转矩形
		}
	}

	// 绘制
	drawImg = Mat::zeros(src.size(), src.type());
	Point2f pts[4];
	for (size_t t = 0; t < contours.size(); t++) {
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		//rectangle(drawImg, ploy_rects[t], color, 2, 8);
		//circle(drawImg, ccs[t], radius[t], color, 2, 8);
		if (contours_ploy[t].size() > 5) {
			ellipse(drawImg, myellipse[t], color, 1, 8);//绘制最小的椭圆
			minRects[t].points(pts);//绘制最小的矩形
			for (int r = 0; r < 4; r++) {
				line(drawImg, pts[r], pts[(r + 1) % 4], color, 1, 8);
			}
		}
	}

	imshow(output_win, drawImg);
	return;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值