机器学习-回归算法中利用Ridge回归、LASSO回归、Elastic Net弹性网络解决过拟合问题

本文探讨了过拟合问题及其成因,并介绍了Ridge回归、LASSO回归和Elastic Net弹性网络作为解决方案。Ridge回归使用L2正则化,LASSO回归使用L1正则化,而Elastic Net结合两者,以平衡模型稳定性和求解速度。文章通过实例展示了如何使用Ridge回归进行预测,并评估了模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ridge回归、LASSO回归、Elastic Net弹性网络解决过拟合问题
1.如果仅是在测试集数据集上存在该问题–>过拟合
如果模型在训练集上的效果不错,但是在测试集上的效果非常差,在这种情况下,认为模型存在过拟合。
产生的原因:
a.样本少
b.模型的学习能力太强(模型比较复杂)
c.做了太多的特征的增维操作
解决方案
a.增加样本的数量
b.换一个算法模型或者在训练过程中,加入正则化项系数,限制模型过拟合,正则化有两个:L1和L2
c.不要做太多的增维操作
为了防止过拟合,不能让theta的值过大或过小,可以在目标函数上增加一个平方和损失。
平方和损失称之为L2-norm
绝对值theta称之为L1-norm
Ridge回归:使用L2正则的线性回归模型称为Ridge回归(岭回归)
LASSO回归:使用L1正则的线性回归模型称为LASSO回归
Elastic Net(弹性网络):同时使用L1和L2正则的线性回归模型
区别:
Ridge模型具有较高的准确性、鲁棒性以及稳定性(如果数据中不存在冗余的特征属性)
LASSO模型因为能去掉数据中的噪音或者冗余(所以将LASSO算法运用到特征的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值