【算法】一个简单的决策树(DT)原理

在这里插入图片描述

基本原理

决策树是由一系列树状的节点构成,每一个节点代表一个特征并具有相应的决策规则。所有样本从根节点不断划分到子节点,直到叶子节点结束流程,实现分类。

决策树的构建过程就是确定特征的顺序和对应的决策规则。

构建方法

交互式二分法(ID3),采用香农信息论中定义的熵作为度量,其反应该节点上的特征对样本分类的不纯度。假设采用特征A为根节点,计算下一级熵不纯度比上一级熵不纯度的减少量(信息增益),选择最大的信息增益对应的特征作为根节点,以此选取下面的子节点。

剪枝

在有限的样本中如果决策树的规模太大,容易捕捉到训练集中的噪声,影响模型的泛化能力。所以,有必要对模型进行剪枝。主要分为先剪枝和后剪枝:

  • 先减枝:在决策树生长的过程中,判断某节点是否需要继续分支(以分类错误率为标准)
  • 后减枝:从叶节点出发,如果消除相同父节点的叶节点后熵不纯度没有明显下降,则进行删除(以分类错误率为标准)

猜你喜欢:👇🏻
【算法】一个简单的随机森林(RF)原理
【算法】一个简单的支持向量机(SVM)原理
【算法】一个简单的ISODATA原理
在这里插入图片描述

### 决策树算法原理 决策树(Decision Tree, DT)是一种基于树状结构进行预测建模的方法,其核心思想是通过对数据集中的特征进行划分来构建一棵树形结构。这棵树的每个节点代表一个条件测试,每条分支对应于可能的结果,而叶子节点则存储最终的分类或回归值。 #### 基本组成 决策树主要由三个部分构成:根节点、内部节点和叶节点[^1]。 - **根节点**:表示整个训练样本集合。 - **内部节点**:用于表示某个特定属性上的测试。 - **叶节点**:表示具体的类别标签或者输出值。 #### 学习过程 决策树的学习通常遵循自顶向下的递归分裂策略。具体来说,它会从当前的数据集中选取最优的特征作为分割标准,并以此创建子节点。这一过程不断重复直到满足停止准则为止,比如达到最大深度、最小样本数量或者其他设定阈值[^4]。 #### 特征选择依据 为了找到最佳的分割方式,常用的信息理论度量包括熵(Entropy)与信息增益(Information Gain)[^1]。其中, - **熵**衡量的是随机变量不确定性程度; - **信息增益**定义为父代节点的熵减去加权后的子节点总熵之差。 通过计算不同特征带来的信息增益大小,可以选择使整体系统混乱度降低最多的那个维度来进行下一步拆分操作。 #### 剪枝技术 为了避免过拟合现象发生,还需要采取适当措施简化已生成好的复杂模型——即所谓的“剪枝”。主要有两种形式: - **预剪枝**:提前终止某些路径的增长; - **后剪枝**:先允许完全生长再回溯删除不必要的部分。 ### Python实现案例 下面展示了一个简单的利用Scikit-Learn库完成的手写数字识别任务: ```python from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt from sklearn import tree # 加载数据集 digits = load_digits() X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42) # 初始化并训练模型 clf = DecisionTreeClassifier(criterion='entropy', max_depth=8) clf.fit(X_train, y_train) # 可视化决策树 plt.figure(figsize=(20,10)) tree.plot_tree(clf,filled=True,class_names=digits.target_names.tolist(),feature_names=['pixel_'+str(i) for i in range(len(digits.images[0].ravel()))]) plt.show() print(f'Accuracy on training set: {round(clf.score(X_train,y_train)*100,2)}%') print(f'Accuracy on testing set: {round(clf.score(X_test,y_test)*100,2)}%') ``` 上述脚本不仅实现了基础功能而且还提供了图形界面让用户更直观地观察到内部逻辑关系[^2]. ### 应用场景分析 由于其良好的可读性和适应范围广等特点使得决策树非常适合处理各种类型的业务需求,无论是金融风险评估还是医疗诊断等领域都能见到它的身影[^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值