【算法】一个简单的随机森林(RF)原理

在这里插入图片描述

基本原理

通过构建多棵决策树,取决策结果的众数作为最终的分类结果。

构建方法

每次对原始M个样本进行自举重采样(bootstrap-resampling),即有放回的抽取M次样本,形成可重复的新数据集(长度还是M)用于构建一个决策树。

在决策树构建时,每次从所有的N个特征中随机抽取n个特征(n远小于N),作为当前节点的候选特征,
然后确定该节点的最优特征。

构建出K个决策树后,投票选择众数即可。
在这里插入图片描述

猜你喜欢:👇🏻
【算法】一个简单的决策树(DT)原理
【算法】一个简单的支持向量机(SVM)原理
【算法】一个简单的线性判别分析(LDA)原理
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值