基本原理
通过构建多棵决策树,取决策结果的众数作为最终的分类结果。
构建方法
每次对原始M个样本进行自举重采样(bootstrap-resampling),即有放回的抽取M次样本,形成可重复的新数据集(长度还是M)用于构建一个决策树。
在决策树构建时,每次从所有的N个特征中随机抽取n个特征(n远小于N),作为当前节点的候选特征,
然后确定该节点的最优特征。
构建出K个决策树后,投票选择众数即可。
猜你喜欢:👇🏻
⭐【算法】一个简单的决策树(DT)原理
⭐【算法】一个简单的支持向量机(SVM)原理
⭐【算法】一个简单的线性判别分析(LDA)原理