Monte Carlo Integration 蒙特卡罗方法求积分 附简单例题+代码

蒙特卡罗积分是一种统计方法,通过随机抽样估算积分值。它利用随机变量的数学期望来近似实际积分。在计算机的帮助下,这种方法能解决各种积分问题,包括上下界为0-1的情况和无界情况。例如,对于标准正态分布函数的积分,可以通过转换和生成0-1均匀分布的随机数进行估计。随着样本数量的增加,估算值会接近真实值。文中还提到了书本例题、课上例题和课后习题,如求π和蒲丰投针问题的应用。
摘要由CSDN通过智能技术生成

摘要

蒙特卡罗积分是一种基于随机抽样的统计方法。打个比方,要想知道抛出硬币得到正面的概率,随机投1000次,得到500次左右,推测出概率应该为 1 2 \frac{1}{2} 21。差不多是这意思,比较著名的例子是W.S.戈塞特使用随机抽样来研究现在被称为“学生t”统计数据的分布。随着计算机的出现及发展,该方法也得到发展。

方法概述

  • 概述 ∫ a b g ( x ) d x \int_a^b g(x)dx abg(x)dx
    理论基础:如果X是一个随机变量,其密度函数为 f ( x ) f(x) f(x),那么随机变量 Y = g ( X ) Y=g(X) Y=g(X)的数学期望为 E [ g ( X ) ] = ∫ − ∞ ∞ g ( x ) f ( x ) d x E[g(X)]=\int_{-\infty}^{\infty} g(x)f(x)dx E[g(X)]=g(x)f(x)dx
    那么获得服从随机变量X分布的随机数,那么所求的 E [ g ( x ) ] E[g(x)] E[g(x)] 就是该样本均值的无偏估计。

  • 计算(积分上下界为0-1) θ = ∫ 0 1 g ( x ) d x \theta=\int_0^1 g(x)dx θ=01g(x)dx, 求 θ \theta θ
    这么想: ∫ 0 1 g ( x ) d x = ∫ 0 1 g ( x ) × 1 d x \int_0^1g(x)dx=\int_0^1g(x) \times 1dx 01g(x)dx=01g(x)×1dx套上面的意思,假定X服从均匀分布 U(0,1),那么 f ( x ) = 1 f(x)=1 f(x)=1, 那么生成该均匀分布的随机数,代入 g ( x ) g(x) g(x)式子中,则
    θ = g ( x ) ‾ = 1 N ∑ 0 N g ( x i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值