计算单词在文章中不同位置的权重

在信息抽取中,词语在文章的前、中、后部分有不同的权重。通常开头权重最高,然后是结尾,中间最低。文章中的【日期类】实体在结尾出现权重高,开头和中间可能是伪实体。通过统计实体位置、计算位置密度和权重,可以预设免训练模型进行分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

场景

  • 在信息抽取中,词语在文章中各个位置具有不同的权重。
  • 把文章简单分为前中后三部分,某词出现在前面时有较大概率是关键词,出现在其它位置时有较小概率是关键词
  • 例如某【日期类】实体在结尾出现的概率较大,故该实体结尾权重较高,在开头和中间出现的词极可能是伪实体
  • 通常文章信息权重排序:开头>结尾>中间

步骤

  1. 统计实体在文章出现的位置
  2. 计算位置密度
  3. 计算位置权重(https://blog.csdn.net/Yellow_python/article/details/104504629)
from sklearn.gaussian_process import GaussianProcessRegressor
from matplotlib import pyplot 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小基基o_O

您的鼓励是我创作的巨大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值