判断各种排序算法的稳定性

排序算法稳定性

  如果在一个待排序的序列中,存在2个相等的数,在排序后这2个数的相对位置保持不变,那么该排序算法是稳定的;否则是不稳定的。

举个例子
  对五个同学(A,B,C,D,E)进行成绩排序,他们的成绩分别为:90,88,79,88,92,按成绩从高到低排(92,90,88,88,79):

E,A,B,D,C——稳定的(B,D的相对位置没有变化)
E,A,D,B,C——不稳定的(B,D的相对位置发生了变化)

排序算法稳定的意义

排序算法如果是稳定的,从一个键上排序,然后在从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。

上面是引用别人的话,感觉不怎么对。

举个例子
  对五个同学(A,B,C,D,E)进行成绩排序,他们语数外的总成绩分别为:271,282,264,295,282,同学B和E的总成绩是一样的,如果是稳定排序,按成绩高低排就是:D,B,E,A,C(B,E的相对位置未改变),如果是不稳定排序就是:D,E,B,A,C(B,E的相对位置改变了),对于排序结果还可以用语文的单科成绩来进行再排序。

如果排序算法是稳定的,元素交换的次数可能会少一点(没有查到相关资料)

排序算法的稳定性判定

1.冒泡排序(Bubble Sort)

  冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定的排序算法。

2.选择排序(Selection sort)

  选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n - 1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序是不稳定的排序算法。

3.插入排序(Insertion sort )

  插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的
  下图演示了对4个元素进行直接插入排序的过程,共需要(a),(b),(c)三次插入。
这里写图片描述

4.快速排序(Quick sort)

  快速排序(Quick sort)是对冒泡排序的一种改进,采用的是分治的思想。快速排序简单的说就是选择一个基准(一般选第一个数),将比基准大的数放在一边,小的数放到另一边。对这个数的两边再递归上述方法。
  一趟快速排序的算法是:
1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];
3)从j开始向前搜索,即由后开始向前搜索(j–),找到第一个小于key的值A[j],将A[j]和A[i]互换;
4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]互换;
5)重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。
  如:排列 66 13 51 76 81 26 57 69 23
  以66为基准,升序排序的话,比66小的放左边,比66大的放右边, 类似这种情况 13 。。。 66。。。69

  具体快速排序的规则一般如下:
  从右边开始查找比66小的数,找到的时候先等一下,再从左边开始找比66大的数,将这两个数借助66互换一下位置,继续这个过程直到两次查找过程碰头。
  例子中:

        66  13  51  76  81  26  57  69  23
从右边找到23比66小,互换
        23  13  51  76  81  26  57  69  66
从左边找到76比66大,互换
        23  13  51  66  81  26  57  69  76
继续从右边找到57比66小,互换
        23  13  51  57  81  26  66  69  76
从左边查找,81比66大,互换
        23  13  51  57  66  26  81  69  76
从右边开始查找26比66小,互换
        23  13  51  57  26  66  81  69  76
此时66左边的数都比66小,66右边的数都比66大,完成一轮排序,对这个数的两边再递归上述方法。

  在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为5 3 3 4 3 8 9 10 11,现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j] 交换的时刻。

5.归并排序(MERGE-SORT)

  归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
  如 设有数列{6,202,100,301,38,8,1}

初始状态:6,202,100,301,38,81
第一次归并后:{6,202},{100,301},{8,38},{1},比较次数:3;
第二次归并后:{6,100,202,301}{1,8,38},比较次数:4;
第三次归并后:{1,6,8,38,100,202,301},比较次数:4;
总的比较次数为:3+4+4=11

  归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。所以,归并排序也是稳定的排序算法。

6.基数排序(radix sort)

  基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
  如有一串数值如下所示:
  73, 22, 93, 43, 55, 14, 28, 65, 39, 81
  首先根据个位数的数值,在遍历数据时将它们各自分配到编号0至9的桶(个位数值与桶号一一对应)中。

  分配结果(逻辑想象)如下图所示:
这里写图片描述
  分配结束后。接下来将所有桶中所盛数据按照桶号由小到大(桶中由顶至底)依次重新收集串起来,得到如下仍然无序的数据序列:

81  22  73  93  43  14  55  65  28  39//个位是自然排序的

  接着,再进行一次分配,这次根据十位数值来分配(原理同上),分配结果(逻辑想象)如下图所示:
这里写图片描述
  分配结束后。接下来再将所有桶中所盛的数据(原理同上)依次重新收集串接起来,得到如下的数据序列:

14  22  28  39  43  55  65  73  81  93

  观察可以看到,此时原无序数据序列已经排序完毕。如果排序的数据序列有三位数以上的数据,则重复进行以上的动作直至最高位数为止。

7.希尔排序(shell sort)

  希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是不稳定排序算法。
  希尔排序的大体思路是:将一个未排序的序列分成多个组,然后在组内使用插入排序对组内序列排序。我们的分组方式是将每隔固定位置(增量)的元素分成一组。之后去调整这个间隔大小,重新分组,组内重新排序。直到分组的间隔为1,也就是所有的元素分成一组,再进行一次插入排序,这样就可以完成整个序列的排序过程。
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小, 插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比O(n^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的
  例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样:

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

  然后我们对每列进行排序:

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

  将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ].这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

  排序之后变为:

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

  依序连接在一起得到:[10 14 13 25 23 33 27 25 59 39 65 73 45 94 82 94]
最后以1步长进行排序(此时就是简单的插入排序了)。

8.堆排序(Heapsort sort)

  堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
  既然是堆排序,自然需要先建立一个堆,而建堆的核心内容是调整堆,使二叉树满足堆的定义(每个节点的值都不大于其父节点的值)。调堆的过程应该从最后一个非叶子节点开始,假设有数组A = {1, 3, 4, 5, 7, 2, 6, 8, 0}。那么调堆的过程如下图,数组下标从0开始,A[3] = 5开始。分别与左孩子和右孩子比较大小,如果A[3]最大,则不用调整,否则和孩子中的值最大的一个交换位置,在图1中是A[7] > A[3] > A[8],所以A[3]与A[7]对换,从图1.1转到图1.2。
这里写图片描述
  我们知道堆的结构是节点i的孩子为2 * i和2 * i + 1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n 的序列,堆排序的过程是从第n / 2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n / 2 - 1, n / 2 - 2, … 1这些个父节点选择元素时,就会破坏稳定性。有可能第n / 2个父节点交换把后面一个元素交换过去了,而第n / 2 - 1个父节点把后面一个相同的元素没 有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法。

  综上,得出结论: 选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,而冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值