准确率(Precision)和召回率(Recall)

因为最近在研究图像检索的时候,需要考虑检索性能的时候常常会用到准备率和召回率这样的参数。之前又一直会忘记或者混淆,所以这里做一个记录。


看到一张解释得一目了然的图片来解释这两个概念,故引用至此。

(引用连接:http://www.cnblogs.com/bluepoint2009/archive/2012/09/18/precision-recall-f_measures.html


从上图理解可以知道,

所谓的准确率(Precision)就是指检索出来的条目中(有准确的和不准确的)准确的占比是多少,

所谓的召回率(Recall)就是指检索出来的准确的条目数占所有准确的条目中的占比,也就是所有准确的条目有多少被检索出来了。


然后就是一些true positive, False negative等的概念,有时候也跟上述两个指标联系起来使用。



性能中常常要考虑一个Precision和Recall的一个tradeoff,因此要视不同情况来定参数。


更多内容可以参考:http://blog.csdn.net/pirage/article/details/9851339

### YOLOv8 模型的准确率、精确召回率 对于YOLOv8模型而言,准确理解其性能评估中的几个核心概念至关重要。 #### 准确率(Accuracy) 在多类分类场景下,准确率是指所有预测正确的样本占总样本的比例。然而,在目标检测任务中,“准确率”这一术语并不常用,更多关注的是精确(Precision)召回率(Recall),以及它们衍生出来的mAP指标[^1]。 #### 精确Precision) 精确为真正例(True Positives, TP)除以真正例加假正例(False Positives, FP)的数量,即: \[ \text{Precision} = \frac{\text{TP}}{\text{TP}+\text{FP}} \] 这反映了当模型做出正面预测时,实际为真的比例。高精确意味着很少有背景或其他物体被错误地标记为目标对象[^3]。 #### 召回率Recall召回率定义为真正例(TP)除以真正例加上假反例(False Negatives, FN)的数量: \[ \text{Recall} = \frac{\text{TP}}{\text{TP}+\text{FN}} \] 该比表示所有真实存在的目标中有多少被成功识别出来。较高的召回率表明较少的目标丢失未检出。 #### 综合考量 值得注意的是,虽然可以单独优化精确召回率,但在实践中往往需要找到两者之间的平衡点。例如,如果仅追求高的召回率而忽视精确,则可能导致大量误报;反之亦然。因此,通常采用mAP作为整体性能度量标准,因为它考虑到了不同阈值下的平均精度变化情况。 ```python def calculate_precision_recall(tp, fp, fn): precision = tp / (tp + fp) if (tp + fp) != 0 else 0 recall = tp / (tp + fn) if (tp + fn) != 0 else 0 return precision, recall ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值