准确率accuracy、精确率precision、召回率recall、f1_score

准确率是分类器正确分类的样本数与总样本数的比例,但并不总是能全面评估分类器性能。精确率是真正例占预测为正例的比例,召回率是真正例占实际正例的比例。当需要平衡精确率和召回率时,F1分数(精确率和召回率的调和平均数)是一个有用的指标。
摘要由CSDN通过智能技术生成

一、准确率

准确率(accuracy):对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。
由准确率,我们的确可以在一些场合,从某种意义上得到一个分类器是否有效,但它并不总是能有效的评价一个分类器的工作。举个例子,google抓取 了argcv 100个页面,而它索引中共有10,000,000个页面,随机抽一个页面,分类下,这是不是argcv的页面呢?如果以accuracy来判断我的工 作,那我会把所有的页面都判断为"不是argcv的页面",因为我这样效率非常(return false,一句话),而accuracy已经到了99.999(9,999,900/10,000,000),完爆其它很多分类器辛辛苦苦算的值,而我这个算法显然不是需求期待的,那怎么解决呢?这就是precision,recall和f1-measure出场的时间了.

二、精确率、召回率、f1

  • TP ——将正类预测为正类数(True Positive)

  • FN ——将正类预测为负类数(False Negative)

  • FP ——-将负类预测为正类

  • TN ——-将负类预测为负类数

真实为正 真实为负
预测为正 TP FP
预测为负 TN FN

准确率= T P ÷ ( T P + F P + T N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值