基于逻辑回归算法的心脏病不平衡数据分类代码实现

1.数据说明

数据来源Kaggle网站中引用的CDC数据,原数据大概有300个变量,这里大约使用20个,严重不平衡数据,约为1:9。该代码通过对进行清洗,标准化,欠采样(Undersampling)进行数据对平衡工作,进行特征分析,最后用逻辑回归、随机森林、决策树、高斯贝叶斯算法进行模型的构建和对心脏病进行预测,进行了四种算法的比较,最后通过逻辑回归算法得到最好的效果。也印证了原数据集通过权重或欠采样以及逻辑回归的理论。代码已上传到Github

2.数据预

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值