1.数据说明
数据来源Kaggle网站中引用的CDC数据,原数据大概有300个变量,这里大约使用20个,严重不平衡数据,约为1:9。该代码通过对进行清洗,标准化,欠采样(Undersampling)进行数据对平衡工作,进行特征分析,最后用逻辑回归、随机森林、决策树、高斯贝叶斯算法进行模型的构建和对心脏病进行预测,进行了四种算法的比较,最后通过逻辑回归算法得到最好的效果。也印证了原数据集通过权重或欠采样以及逻辑回归的理论。代码已上传到Github。
2.数据预
1.数据说明
数据来源Kaggle网站中引用的CDC数据,原数据大概有300个变量,这里大约使用20个,严重不平衡数据,约为1:9。该代码通过对进行清洗,标准化,欠采样(Undersampling)进行数据对平衡工作,进行特征分析,最后用逻辑回归、随机森林、决策树、高斯贝叶斯算法进行模型的构建和对心脏病进行预测,进行了四种算法的比较,最后通过逻辑回归算法得到最好的效果。也印证了原数据集通过权重或欠采样以及逻辑回归的理论。代码已上传到Github。
2.数据预