高数习题8.1

  1. ∫ L ( x y + y z + z x ) d s \int_L(xy+yz+zx)ds L(xy+yz+zx)ds,其中L为过四点 O ( 0 , 0 , 0 ) , A ( 0 , 0 , 1 ) , B ( 0 , 1 , 1 ) , C ( 1 , 1 , 1 ) O(0,0,0),A(0,0,1),B(0,1,1),C(1,1,1) O(0,0,0),A(0,0,1),B(0,1,1),C(1,1,1)的折线.
    解:
    ∫ L ( x y + y z + z x ) d s = ∫ L 1 ( x y + y z + z x ) d s + ∫ L 2 ( x y + y z + z x ) d s + ∫ L 3 ( x y + y z + z x ) d s = 0 + ∫ 0 1 y d y + ∫ 0 1 x + 1 + x d x = 1 2 + 2 = 5 2 \begin{aligned} \int_L(xy+yz+zx)ds &= \int_{L1}(xy+yz+zx)ds + \int_{L2}(xy+yz+zx)ds +\int_{L3}(xy+yz+zx)ds \\ &= 0 + \int_0^1 y dy + \int_0^1 x+1+x dx \\ &= \frac{1}{2} + 2 \\ & = \frac{5}{2} \\ \end{aligned} L(xy+yz+zx)ds=L1(xy+yz+zx)ds+L2(xy+yz+zx)ds+L3(xy+yz+zx)ds=0+01ydy+01x+1+xdx=21+2=25
  2. ∮ L x y d s \oint_L xy ds Lxyds,其中L是正方形: ∣ x ∣ + ∣ y ∣ = a ( a > 0 ) |x| + |y| = a(a>0) x+y=a(a>0)的边界.
    解:
    L 1 : x + y = a L 2 : y − x = a L 3 : x + y = − a L 4 : x − y = a L1:x+y=a \\ L2:y-x=a \\ L3:x+y=-a \\ L4:x-y=a L1:x+y=aL2:yx=aL3:x+y=aL4:xy=a
    ∮ L x y d s = ∮ L 1 x y d s + ∮ L 2 x y d s + ∮ L 3 x y d s + ∮ L 4 x y d s = ∫ a 0 x ( a − x ) 2 d x + ∫ 0 − a x ( a + x ) 2 d x + ∫ − a 0 x ( − a − x ) 2 d x + ∫ 0 a x ( x − a ) 2 d x = ∫ a 0 x ( a − x ) 2 d x + ∫ − a 0 x ( − a − x ) 2 d x + ∫ 0 − a x ( a + x ) 2 d x + ∫ 0 a x ( x − a ) 2 d x = 0 + 0 = 0 \begin{aligned} \oint_L xy ds &= \oint_{L1} xy ds+ \oint_{L2} xy ds + \oint_{L3} xy ds + \oint_{L4} xy ds\\ &= \int_a^0 x(a-x)\sqrt{2} dx + \int_0^{-a} x(a+x)\sqrt{2} dx + \int_{-a}^0 x(-a-x)\sqrt{2} dx + \int_0^a x(x-a)\sqrt{2} dx \\ &= \int_a^0 x(a-x)\sqrt{2} dx + \int_{-a}^0 x(-a-x)\sqrt{2} dx + \int_0^{-a} x(a+x)\sqrt{2} dx + \int_0^a x(x-a)\sqrt{2} dx \\ & = 0 + 0 \\ & = 0 \\ \end{aligned} Lxyds=L1xyds+L2xyds+L3xyds+L4xyds=a0x(ax)2 dx+0ax(a+x)2 dx+a0x(ax)2 dx+0ax(xa)2 dx=a0x(ax)2 dx+a0x(ax)2 dx+0ax(a+x)2 dx+0ax(xa)2 dx=0+0=0
  3. ∫ L ( 1 + y 2 ) d s \int_L(1+y^2)ds L(1+y2)ds,其中L为摆线段: x = a ( t − s i n t ) , y = a ( 1 − c o s t ) , 0 ≤ t ≤ 2 π x=a(t-sint),y=a(1-cost),0\leq t \leq 2\pi x=a(tsint),y=a(1cost),0t2π.
    ∫ L ( 1 + y 2 ) d s = ∫ 0 2 π [ 1 + a 2 ( 1 − c o s t ) 2 ] a 2 ( 1 − c o s t ) 2 + a 2 s i n 2 t d t = ∫ 0 2 π ( 1 + 4 a 2 s i n 4 t 2 ) 2 a s i n t 2 d t = 2 a ∫ 0 2 π ( s i n t 2 + 4 a 2 s i n 5 t 2 ) d t = − 4 a [ c o s t 2 + 4 a 2 ( c o s t 2 − 2 c o s 3 t 2 3 + c o s 5 t 2 5 ) ] ∣ 0 2 π = 8 a + 256 15 a 3 \begin{aligned} \int_L(1+y^2)ds &= \int_0^{2\pi}[1+a^2(1-cost)^2]\sqrt{a^2(1-cost)^2+a^2sin^2t}dt \\ &= \int_0^{2\pi}(1+4a^2sin^4\frac{t}{2})2asin\frac{t}{2}dt \\ &= 2a\int_0^{2\pi}(sin\frac{t}{2} + 4a^2sin^5\frac{t}{2})dt \\ &= -4a\left. [cos\frac{t}{2} + 4a^2(cos\frac{t}{2} - \frac{2cos^3\frac{t}{2}}{3} + \frac{cos^5\frac{t}{2}}{5})]\right|_0^{2\pi} \\ & = 8a + \frac{256}{15}a^3 \\ \end{aligned} L(1+y2)ds=02π[1+a2(1cost)2]a2(1cost)2+a2sin2t dt=02π(1+4a2sin42t)2asin2tdt=2a02π(sin2t+4a2sin52t)dt=4a[cos2t+4a2(cos2t32cos32t+5cos52t)]02π=8a+15256a3
  4. ∫ L 1 x 2 + y 2 + z 2 d s \int_L\frac{1}{x^2+y^2+z^2}ds Lx2+y2+z21ds,其中L为螺旋线段: x = a c o s t , y = a s i n t , z = b t ( 0 ≤ t ≤ 2 π , a > 0 , b > 0 ) x=acost,y=asint,z=bt (0\leq t \leq 2\pi,a>0,b>0) x=acost,y=asint,z=bt(0t2π,a>0,b>0).
    ∫ L 1 x 2 + y 2 + z 2 d s = ∫ 0 2 π 1 a 2 + b 2 t 2 a 2 s i n 2 t + a 2 c o s 2 t + b 2 d t = a 2 + b 2 ∫ 0 2 π 1 a 2 + b 2 t 2 d t = a 2 + b 2 a b a r c t a n ( b t a ) ∣ 0 2 π = a 2 + b 2 a b a r c t a n ( 2 π b a ) \begin{aligned} \int_L\frac{1}{x^2+y^2+z^2}ds &= \int_0^{2\pi}\frac{1}{a^2+b^2t^2}\sqrt{a^2sin^2t +a^2cos^2t + b^2}dt \\ &= \sqrt{a^2+b^2}\int_0^{2\pi}\frac{1}{a^2+b^2t^2}dt \\ &= \frac{\sqrt{a^2+b^2}}{ab}\left. arctan(\frac{bt}{a})\right|_0^{2\pi} \\ &= \frac{\sqrt{a^2+b^2}}{ab}arctan(\frac{2\pi b}{a}) \\ \end{aligned} Lx2+y2+z21ds=02πa2+b2t21a2sin2t+a2cos2t+b2 dt=a2+b2 02πa2+b2t21dt=aba2+b2 arctan(abt)02π=aba2+b2 arctan(a2πb)
  5. ∮ C ( x + y ) d s \oint_C (x+y) ds C(x+y)ds,其中C为双纽线: r 2 = a 2 c o s 2 θ r^2=a^2cos2\theta r2=a2cos2θ的右面的一瓣(a>0).(提示:先写出曲线的参数方程.)
    解:
    画图:
    在这里插入图片描述
    { x = a c o s 2 θ c o s θ y = a c o s 2 θ s i n θ \begin{cases} x=a\sqrt{cos2\theta}cos\theta \\ y=a\sqrt{cos2\theta}sin\theta \\ \end{cases} {x=acos2θ cosθy=acos2θ sinθ
    ∮ C ( x + y ) d s = ∫ − π 4 π 4 ( a c o s 2 θ c o s θ + a c o s 2 θ s i n θ ) ( − a s i n 3 θ c o s 2 θ ) 2 + ( a c o s 3 θ c o s 2 θ ) 2 d θ = a 2 ∫ − π 4 π 4 ( c o s θ + s i n θ ) d θ = a 2 ( s i n θ − c o s θ ) ∣ − π 4 π 4 = 2 a 2 \begin{aligned} \oint_C (x+y) ds &= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}(a\sqrt{cos2\theta}cos\theta + a\sqrt{cos2\theta}sin\theta)\sqrt{(-\frac{asin3\theta}{\sqrt{cos2\theta}})^2+(\frac{acos3\theta}{\sqrt{cos2\theta}})^2}d\theta \\ &= a^2\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}(cos\theta + sin\theta)d\theta \\ &= a^2 \left. (sin\theta - cos\theta) \right|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\ & = \sqrt{2}a^2 \end{aligned} C(x+y)ds=4π4π(acos2θ cosθ+acos2θ sinθ)(cos2θ asin3θ)2+(cos2θ acos3θ)2 dθ=a24π4π(cosθ+sinθ)dθ=a2(sinθcosθ)4π4π=2 a2
  6. ∫ L x y d s \int_L xy ds Lxyds,其中L是椭圆周: x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1位于第一象限中的那部分.
    解:
    { x = a c o s θ y = b s i n θ \begin{cases} x=acos\theta \\ y=bsin\theta \\ \end{cases} {x=acosθy=bsinθ
    ∫ L x y d s = ∫ 0 π 2 ( a b c o s θ s i n θ ) a 2 s i n 2 θ + b 2 c o s 2 θ d θ = a b 2 ( a 2 − b 2 ) ∫ 0 π 2 a 2 s i n 2 θ + b 2 c o s 2 θ d ( a 2 s i n 2 θ + b 2 c o s 2 θ ) = a b 3 ( a 2 − b 2 ) ( a 2 s i n 2 θ + b 2 c o s 2 θ ) 3 2 ∣ 0 π 2 = a b ( a 2 + a b + b 2 ) 3 ( a + b ) \begin{aligned} \int_L xy ds &= \int_0^{\frac{\pi}{2}}(abcos\theta sin\theta)\sqrt{a^2sin^2\theta+b^2cos^2\theta}d\theta\\ &= \frac{ab}{2(a^2-b^2)} \int_0^{\frac{\pi}{2}}\sqrt{a^2sin^2\theta+b^2cos^2\theta}d(a^2sin^2\theta+b^2cos^2\theta)\\ &= \frac{ab}{3(a^2-b^2)} \left. (a^2sin^2\theta+b^2cos^2\theta)^{\frac{3}{2}} \right|_0^{\frac{\pi}{2}} \\ & = \frac{ab(a^2+ab+b^2)}{3(a+b)} \end{aligned} Lxyds=02π(abcosθsinθ)a2sin2θ+b2cos2θ dθ=2(a2b2)ab02πa2sin2θ+b2cos2θ d(a2sin2θ+b2cos2θ)=3(a2b2)ab(a2sin2θ+b2cos2θ)2302π=3(a+b)ab(a2+ab+b2)
  7. ∫ L x 2 + y 2 d s \int_L \sqrt{x^2+y^2} ds Lx2+y2 ds,其中L为曲线段: x = a ( c o s t + t s i n t ) , y = a ( s i n t − t c o s t ) ( 0 ≤ t ≤ 2 π ) x=a(cost+tsint),y=a(sint-tcost)(0\leq t\leq 2\pi) x=a(cost+tsint),y=a(sinttcost)(0t2π).
    解:
    ∫ L x 2 + y 2 d s = ∫ 0 2 π a t 2 + 1 a t 2 d t = a 2 ∫ 0 2 π t t 2 + 1 d t = a 2 3 ( t 2 + 1 ) 3 2 ∣ 0 2 π = a 2 3 [ ( 4 π 2 + 1 ) 3 2 − 1 ] \begin{aligned} \int_L \sqrt{x^2+y^2} ds &= \int_0^{2\pi}a\sqrt{t^2+1}a\sqrt{t^2}dt \\ &= a^2\int_0^{2\pi}t\sqrt{t^2+1}dt \\ &= \frac{a^2}{3} \left. (t^2+1)^{\frac{3}{2}} \right|_0^{2\pi} \\ &= \frac{a^2}{3}[(4\pi^2+1)^{\frac{3}{2}} - 1] \\ \end{aligned} Lx2+y2 ds=02πat2+1 at2 dt=a202πtt2+1 dt=3a2(t2+1)2302π=3a2[(4π2+1)231]
  8. ∫ L ( x + y − z 5 ) d s \int_L(x+ \sqrt{y}-z^5) ds L(x+y z5)ds,其中L由曲线段 L 1 L_1 L1 L 2 L_2 L2组成, L 1 L_1 L1 L 2 L_2 L2的方程分别为
    L 1 : { y = x 2 , z = 0 , 0 ≤ x ≤ 1 ; L 2 : { x = 1 , y = 1 , 0 ≤ z ≤ 1. L_1:\begin{cases} y=x^2, \\ z=0, \\ \end{cases} 0 \leq x \leq 1; \\ L_2:\begin{cases} x=1, \\ y=1, \\ \end{cases} 0 \leq z \leq 1. L1:{y=x2,z=0,0x1;L2:{x=1,y=1,0z1.
    解:
    ∫ L ( x + y − z 5 ) d s = ∫ L 1 ( x + y ) d s + ∫ L 2 ( 2 − z 5 ) d s = ∫ 0 1 ( 2 x 1 + 4 x 2 ) d x + ∫ 0 1 ( 2 − z 5 ) d z = ( 1 + 4 x 2 ) 3 2 6 + 2 x − x 6 6 ∣ 0 1 = 5 5 + 10 6 \begin{aligned} \int_L(x+ \sqrt{y}-z^5) ds &= \int_{L_1}(x+ \sqrt{y}) ds + \int_{L_2}(2-z^5) ds \\ &= \int_0^1(2x\sqrt{1+4x^2}) dx + \int_0^1 (2-z^5) dz \\ &= \left. \frac{(1+4x^2)^{\frac{3}{2}}}{6} + 2x - \frac{x^6}{6} \right|_0^1 \\ &= \frac{5\sqrt{5}+10}{6} \\ \end{aligned} L(x+y z5)ds=L1(x+y )ds+L2(2z5)ds=01(2x1+4x2 )dx+01(2z5)dz=6(1+4x2)23+2x6x601=655 +10
  9. 若椭圆周 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1上任一点 ( x , y ) (x,y) (x,y)处的线密度为 ∣ y ∣ |y| y,求椭圆周的质量(0<b<a).
    解:
    设L为椭圆周, L 1 L_1 L1为椭圆周的上半部分, L 2 L_2 L2为椭圆周的下半部分。
    { x = a c o s θ y = b s i n θ \begin{cases} x=acos\theta \\ y=bsin\theta \\ \end{cases} {x=acosθy=bsinθ
    ∮ L ∣ y ∣ d s = ∫ L 1 y d s + ∫ L 2 − y d s = ∫ 0 π ( b s i n θ a 2 s i n 2 θ + b 2 c o s 2 θ ) d θ + ∫ π 2 π ( − b s i n θ a 2 s i n 2 θ + b 2 c o s 2 θ ) d θ = 4 ∫ 0 π 2 ( b s i n θ a 2 s i n 2 θ + b 2 c o s 2 θ ) d θ = − 4 a b ∫ 0 π 2 1 − ( a 2 − b 2 ) a 2 c o s 2 θ d c o s θ = − 2 a 2 b a 2 − b 2 [ a r c s i n ( a 2 − b 2 a c o s θ ) + a 2 − b 2 a c o s θ 1 − ( a 2 − b 2 a c o s θ ) 2 ] ∣ 0 π 2 = 2 a 2 b a 2 − b 2 a r c s i n ( a 2 − b 2 a ) + 2 b 2 \begin{aligned} \oint_L|y| ds &=\int_{L_1}y ds + \int_{L_2}-y ds \\ &= \int_0^{\pi}(bsin\theta \sqrt{a^2sin^2\theta+b^2cos^2\theta}) d\theta + \int_{\pi}^{2\pi} (-bsin\theta \sqrt{a^2sin^2\theta+b^2cos^2\theta}) d\theta \\ &= 4\int_0^{\frac{\pi}{2}}(bsin\theta \sqrt{a^2sin^2\theta+b^2cos^2\theta}) d\theta \\ &= -4ab\int_0^{\frac{\pi}{2}}\sqrt{1-\frac{(a^2-b^2)}{a^2}cos^2\theta} dcos\theta \\ &= -\frac{2a^2b}{\sqrt{a^2-b^2}} \left. [arcsin(\frac{\sqrt{a^2-b^2}}{a} cos\theta) + \frac{\sqrt{a^2-b^2}}{a} cos\theta \sqrt{1-(\frac{\sqrt{a^2-b^2}}{a} cos\theta)^2} ] \right|_0^{\frac{\pi}{2}} \\ &= \frac{2a^2b}{\sqrt{a^2-b^2}} arcsin(\frac{\sqrt{a^2-b^2}}{a}) + 2b^2 \\ \end{aligned} Lyds=L1yds+L2yds=0π(bsinθa2sin2θ+b2cos2θ )dθ+π2π(bsinθa2sin2θ+b2cos2θ )dθ=402π(bsinθa2sin2θ+b2cos2θ )dθ=4ab02π1a2(a2b2)cos2θ dcosθ=a2b2 2a2b[arcsin(aa2b2 cosθ)+aa2b2 cosθ1(aa2b2 cosθ)2 ]02π=a2b2 2a2barcsin(aa2b2 )+2b2
  10. 求均匀摆线段: x = a ( t − s i n t ) , y = a ( 1 − c o s t ) , ( 0 ≤ t ≤ π ) x=a(t-sint),y=a(1-cost),(0\leq t\leq \pi) x=a(tsint),y=a(1cost),(0tπ)的质心(其中 a > 0 a>0 a>0).
    解:
    x 0 = ∫ L x d s ∫ L d s = ∫ 0 π a ( t − s i n t ) a 2 ( 1 − c o s t ) 2 + a 2 s i n t 2 t d t ∫ 0 π a 2 ( 1 − c o s t ) 2 + a 2 s i n t 2 t d t = a ∫ 0 π ( t − s i n t ) 2 − 2 c o s t d t ∫ 0 π 2 − 2 c o s t d t = a ∫ 0 π 2 t s i n t 2 − 4 s i n 2 t 2 c o s t 2 d t ∫ 0 π 2 s i n t 2 d t = a 4 s i n t 2 − 2 t c o s t 2 − 4 s i n 3 t 2 3 ∣ 0 π − 2 c o s t 2 ∣ 0 π = 4 a 3 \begin{aligned} x_0 &= \frac{\int_L x ds}{\int_L ds} \\ &= \frac{\int_0^{\pi} a(t-sint)\sqrt{a^2(1-cost)^2+a^2sint^2t} dt}{\int_0^{\pi}\sqrt{a^2(1-cost)^2+a^2sint^2t} dt} \\ &= \frac{a\int_0^{\pi} (t-sint)\sqrt{2-2cost} dt}{\int_0^{\pi}\sqrt{2-2cost} dt} \\ &= a\frac{\int_0^{\pi} 2tsin\frac{t}{2}-4sin^2\frac{t}{2}cos\frac{t}{2} dt}{\int_0^{\pi}2sin\frac{t}{2} dt} \\ &= a\frac{\left. 4sin\frac{t}{2}-2tcos\frac{t}{2} - \frac{4sin^3\frac{t}{2}}{3} \right|_0^\pi}{\left. -2cos\frac{t}{2} \right|_0^\pi} \\ &= \frac{4a}{3} \\ \end{aligned} x0=LdsLxds=0πa2(1cost)2+a2sint2t dt0πa(tsint)a2(1cost)2+a2sint2t dt=0π22cost dta0π(tsint)22cost dt=a0π2sin2tdt0π2tsin2t4sin22tcos2tdt=a2cos2t0π4sin2t2tcos2t34sin32t0π=34a
    y 0 = ∫ L y d s ∫ L d s = ∫ 0 π a ( 1 − c o s t ) a 2 ( 1 − c o s t ) 2 + a 2 s i n t 2 t d t ∫ 0 π a 2 ( 1 − c o s t ) 2 + a 2 s i n t 2 t d t = a ∫ 0 π ( 1 − c o s t ) 2 − 2 c o s t d t ∫ 0 π 2 − 2 c o s t d t = a ∫ 0 π 4 s i n 3 t 2 d t ∫ 0 π 2 s i n t 2 d t = a − 4 c o s t 2 + 4 c o s t 2 3 ∣ 0 π − 2 c o s t 2 ∣ 0 π = 4 a 3 \begin{aligned} y_0 &= \frac{\int_L y ds}{\int_L ds} \\ &= \frac{\int_0^{\pi} a(1-cost)\sqrt{a^2(1-cost)^2+a^2sint^2t} dt}{\int_0^{\pi}\sqrt{a^2(1-cost)^2+a^2sint^2t} dt} \\ &= \frac{a\int_0^{\pi} (1-cost)\sqrt{2-2cost} dt}{\int_0^{\pi}\sqrt{2-2cost} dt} \\ &= a\frac{\int_0^{\pi} 4sin^3\frac{t}{2} dt}{\int_0^{\pi}2sin\frac{t}{2} dt} \\ &= a\frac{\left. -4cos\frac{t}{2} + \frac{4cos\frac{t}{2}}{3} \right|_0^\pi}{\left. -2cos\frac{t}{2} \right|_0^\pi} \\ &= \frac{4a}{3} \\ \end{aligned} y0=LdsLyds=0πa2(1cost)2+a2sint2t dt0πa(1cost)a2(1cost)2+a2sint2t dt=0π22cost dta0π(1cost)22cost dt=a0π2sin2tdt0π4sin32tdt=a2cos2t0π4cos2t+34cos2t0π=34a
    所以质心为: ( 4 a 3 , 4 a 3 ) (\frac{4a}{3},\frac{4a}{3}) (34a,34a)
  11. ∫ L x 2 d s \int_L x^2ds Lx2ds,其中L为圆周: { x 2 + y 2 + z 2 = a 2 , x + y + z = 0. \begin{cases}x^2+y^2+z^2=a^2, \\ x+y+z=0. \end{cases} {x2+y2+z2=a2,x+y+z=0.
    解:
    方程消去z,得 x 2 + x y + y 2 = a 2 2 x^2+xy+y^2=\frac{a^2}{2} x2+xy+y2=2a2,再令 x = x 1 − y 1 , y = x 1 + y 1 x=x_1-y_1,y=x_1+y_1 x=x1y1,y=x1+y1,得 3 x 1 2 + y 1 2 = a 2 2 3x_1^2+y_1^2=\frac{a^2}{2} 3x12+y12=2a2
    参数方程为:
    { x = 2 a 2 ( 3 c o s t 3 − s i n t ) y = 2 a 2 ( 3 c o s t 3 + s i n t ) z = − 6 a c o s t 3 \begin{cases} x=\frac{\sqrt{2}a}{2}(\frac{\sqrt{3}cost}{3}-sint) \\ y=\frac{\sqrt{2}a}{2}(\frac{\sqrt{3}cost}{3}+sint) \\ z=-\frac{\sqrt{6}acost}{3} \\ \end{cases} x=22 a(33 costsint)y=22 a(33 cost+sint)z=36 acost
    ∫ L x 2 d s = ∫ 0 2 π a 2 2 ( 3 c o s t 3 − s i n t ) 2 a 2 2 ( − 3 s i n t 3 − c o s t ) 2 + a 2 2 ( − 3 s i n t 3 + c o s t ) 2 + 2 a 2 s i n 2 t 3 d t = a 3 6 ∫ 0 2 π ( 2 − c o s 2 t − 3 s i n 2 t ) d t = a 3 6 ( 2 t − s i n 2 t 2 + 3 c o s 2 t 2 ) ∣ 0 2 π = 2 a 3 π 3 \begin{aligned} \int_L x^2ds &= \int_0^{2\pi}\frac{a^2}{2}(\frac{\sqrt{3}cost}{3}-sint)^2\sqrt{\frac{a^2}{2}(-\frac{\sqrt{3}sint}{3}-cost)^2+\frac{a^2}{2}(-\frac{\sqrt{3}sint}{3}+cost)^2+\frac{2a^2sin^2t}{3}}dt \\ &= \frac{a^3}{6}\int_0^{2\pi}(2-cos2t-\sqrt{3}sin2t)dt \\ &= \frac{a^3}{6} \left. (2t-\frac{sin2t}{2}+\frac{\sqrt{3}cos2t}{2}) \right|_0^{2\pi} \\ &= \frac{2a^3\pi}{3} \\ \end{aligned} Lx2ds=02π2a2(33 costsint)22a2(33 sintcost)2+2a2(33 sint+cost)2+32a2sin2t dt=6a302π(2cos2t3 sin2t)dt=6a3(2t2sin2t+23 cos2t)02π=32a3π
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值