

在空间几何这一章的学习当中,首先需要建立空间直角坐标系,利用数形结合的方法,再者就是一些公式,空间内两点的距离公式,各个图形的标准形式的方程,本章节我们是从平面的图形方程过渡到空间里的图形方程,方便大家进行比较学习,本章节还需要学习向量及其线性运算,此知识点也是先由平面过度到空间的,这里我们需要知道向量的一些加减乘除运算,还有模的运算和方向角的运算,然后一个重点知识就是要分清数量积和向量积。本次的学霸笔记主要内容就是这些了,希望大家带着这些知识点继续下面的学习吧。
一.空间直角、曲面、曲线

←
空间
直角坐标系
点的坐标
直角坐标系
坐标轴
坐标面
八个卦限
点的投影
特殊的坐标
1、点的坐标:在坐标系中用数字表示一个点的位置
2、直角坐标系
3、坐标轴:三条坐标轴分别为x,y,z
4、做表面:三个做表面,x轴与y轴所在的平面,x轴与z轴所在的平面,y轴与z轴所在平面
5、八个卦限
6、点的投影:设M点是空间的一点,过点M做三个平面分别垂直于x轴,y轴,z轴并交x轴,y轴,z轴于点P、Q、R三点。点P、Q、R分别为点M在x轴,y轴,z轴上的投影
7、特殊的坐标:(1)原点(0,0,0)(2)坐标轴上的点(3)坐标面上的点
曲面方程
→
曲面方程
柱面方程

1、曲面方程的概念:曲面是空间动点的轨迹
2、柱面:椭圆柱面,双曲柱面,抛物柱面

空间曲线及其方程

1、空间曲线的一般方程:空间曲线可以看作两张曲面的交线
2、空间曲线的参数方程:将动点坐标x、y、z表示为t的函数
3、空间曲线在坐标平面上的投影
但是看了空间直角、曲面、曲线,同学们是不是觉得这也不是很困难呐?
当然,这只是这一章的开始,接下来跟紧我的脚步,我们要更进一步啦。
二.旋转曲面与二次曲面

旋转
曲面
二次
曲面

三.向量及其线性运算

向量的
线性
运算
向量的
坐标


1、旋转曲面:由一条平面曲线绕其所在平面上的一条定直线旋转一周所形成的曲面成为旋转曲面
2、二次曲面:我们将x、y、z的三元二次方程所表示的曲面称为二次曲面
3、二次曲面的几种类型:(1)椭圆锥面(2)椭球面(3)单叶双曲面(4)双叶双曲面(5)椭圆抛物面(6)双曲抛物面(7)旋转单叶双曲面(8)旋转双叶双曲面

以上的内容大家可能觉得标准方程太多记不住,其实大家只要结合平面的方程进行记忆就会容易很多,通过在二者之间找出相同点和不同点来进行记忆就会事半功倍。
四.数量积与向量积

向量的
数量积
1.定义 2.性质
3.运算 4.坐标,运算


两向量的数量积
1.定义
2.性质
3.运算
4.坐标,运算

这部分的内容其实很容易,只需要结合高中所学习的内容进行学习就会很容易,并且在这里给大家的建议是几何中学习数学的重要办法是数形结合,通过画图来便于自己的理解。

江海大计算机
编辑 马小宇
图片 杨 阳
文字 杨 阳
审核 高鑫海
