高数习题7.4

1.求由上半球面 z = 3 a 2 − x 2 − y 2 z=\sqrt{3a^2-x^2-y^2} z=3a2x2y2 及旋转抛物面 x 2 + y 2 = 2 a z x^2+y^2=2az x2+y2=2az所围立体的表面积(a>0).
解:
画图:
在这里插入图片描述
解方程:
3 a 2 − x 2 − y 2 = x 2 + y 2 2 a 3 a 2 − x 2 − y 2 = ( x 2 + y 2 ) 2 4 a 2 12 a 4 − 4 a 2 ( x 2 + y 2 ) = ( x 2 + y 2 ) 2 [ ( x 2 + y 2 ) + 6 a 2 ] [ ( x 2 + y 2 − 2 a 2 ) ] = 0 x 2 + y 2 = 2 a 2 \begin{aligned} \sqrt{3a^2-x^2-y^2} &= \frac{x^2+y^2}{2a} \\ 3a^2-x^2-y^2&= \frac{(x^2+y^2)^2}{4a^2} \\ 12a^4-4a^2(x^2+y^2) &= (x^2+y^2)^2 \\ [(x^2+y^2)+6a^2][(x^2+y^2-2a^2)] &= 0 \\ x^2+y^2 &= 2a^2 \end{aligned} 3a2x2y2 3a2x2y212a44a2(x2+y2)[(x2+y2)+6a2][(x2+y22a2)]x2+y2=2ax2+y2=4a2(x2+y2)2=(x2+y2)2=0=2a2
上半部分:
S 1 = ∬ x 2 + y 2 ≤ 2 a 2 1 + z x 2 + z y 2 d σ = ∬ x 2 + y 2 ≤ 2 a 2 1 + ( − x 3 a 2 − x 2 − y 2 ) 2 + ( − y 3 a 2 − x 2 − y 2 ) 2 d σ = ∬ x 2 + y 2 ≤ 2 a 2 3 a 3 a 2 − x 2 − y 2 d σ = ∫ 0 2 π d θ ∫ 0 2 a r d r 3 a 3 a 2 − r 2 = 2 3 π a ∫ 0 2 a r d r 1 3 a 2 − r 2 = − 2 3 π a 3 a 2 − r 2 ∣ 0 2 a = − 2 3 π a 2 + 6 π a 2 \begin{aligned} S_1 &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1 + (\frac{-x}{\sqrt{3a^2-x^2-y^2}})^2 + (\frac{-y}{\sqrt{3a^2-x^2-y^2}})^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \frac{\sqrt{3}a}{\sqrt{3a^2-x^2-y^2}}d\sigma \\ &= \int^{2\pi}_{0}d\theta\int^{\sqrt{2}a}_{0}rdr\frac{\sqrt{3}a}{\sqrt{3a^2-r^2}} \\ &= 2\sqrt{3}\pi a\int^{\sqrt{2}a}_{0}rdr\frac{1}{\sqrt{3a^2-r^2}} \\ &= -2\sqrt{3}\pi a\left. \sqrt{3a^2-r^2}\right| ^{\sqrt{2}a}_{0} \\ &= -2\sqrt{3}\pi a^2 + 6\pi a^2 \\ \end{aligned} S1=x2+y22a21+zx2+zy2 dσ=x2+y22a21+(3a2x2y2 x)2+(3a2x2y2 y)2 dσ=x2+y22a23a2x2y2 3 adσ=02πdθ02 ardr3a2r2 3 a=23 πa02 ardr3a2r2 1=23 πa3a2r2 02 a=23 πa2+6πa2
下半部分:
S 2 = ∬ x 2 + y 2 ≤ 2 a 2 1 + z x 2 + z y 2 d σ = ∬ x 2 + y 2 ≤ 2 a 2 1 + ( x a ) 2 + ( y a ) 2 d σ = ∬ x 2 + y 2 ≤ 2 a 2 a 2 + x 2 + y 2 a d σ = ∫ 0 2 π d θ ∫ 0 2 a r d r a 2 + r 2 a = 2 π a ∫ 0 2 a r d r a 2 + r 2 = 2 π 3 a ( a 2 + r 2 ) 3 2 ∣ 0 2 a = 2 3 π a 2 − 2 3 π a 2 \begin{aligned} S_2 &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1 + (\frac{x}{a})^2 + (\frac{y}{a})^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \frac{\sqrt{a^2+x^2+y^2}}{a}d\sigma \\ &= \int^{2\pi}_{0}d\theta\int^{\sqrt{2}a}_{0}rdr\frac{\sqrt{a^2+r^2}}{a} \\ &= \frac{2\pi}{a}\int^{\sqrt{2}a}_{0}rdr\sqrt{a^2+r^2} \\ &= \frac{2\pi}{3a}\left. (a^2+r^2)^{\frac{3}{2}}\right| ^{\sqrt{2}a}_{0} \\ &= 2\sqrt{3}\pi a^2 - \frac{2}{3}\pi a^2 \\ \end{aligned} S2=x2+y22a21+zx2+zy2 dσ=x2+y22a21+(ax)2+(ay)2 dσ=x2+y22a2aa2+x2+y2 dσ=02πdθ02 ardraa2+r2 =a2π02 ardra2+r2 =3a2π(a2+r2)2302 a=23 πa232πa2
总:
S = S 1 + S 2 = 16 3 π a 2 \begin{aligned} S &= S_1+S_2 \\ &= \frac{16}{3}\pi a^2 \\ \end{aligned} S=S1+S2=316πa2
2. 求锥面 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 被柱面 z 2 = 2 x z^2=2x z2=2x所割部分的曲面面积
解:
画图:
在这里插入图片描述
积分:
S = ∬ x 2 + y 2 ≤ 2 x 1 + z x 2 + z y 2 d σ = ∬ x 2 + y 2 ≤ 2 x 1 + ( x x 2 + y 2 ) 2 + ( y x 2 + y 2 ) 2 d σ = ∬ x 2 + y 2 ≤ 2 x 2 d σ = 2 π \begin{aligned} S &= \iint_{x^2+y^2 \leq 2x} \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2x} \sqrt{1 + (\frac{x}{\sqrt{x^2+y^2}})^2 + (\frac{y}{\sqrt{x^2+y^2}})^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2x}\sqrt{2}d\sigma \\ &= \sqrt{2}\pi\\ \end{aligned} S=x2+y22x1+zx2+zy2 dσ=x2+y22x1+(x2+y2 x)2+(x2+y2 y)2 dσ=x2+y22x2 dσ=2 π
3. 求由三个圆柱面 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2 x 2 + z 2 = R 2 x^2+z^2=R^2 x2+z2=R2 y 2 + z 2 = R 2 y^2+z^2=R^2 y2+z2=R2所围立体的表面积.
解:
画图:
在这里插入图片描述
取第一卦限的观察:
在这里插入图片描述
观察发现由相同的六个部分组成:
这六个部分的交点为 ( 2 2 , 2 2 , 2 2 ) (\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) (22 ,22 ,22 )
D = { ( x , y ) ∣ 0 ≤ y ≤ x ≤ 2 R 2 } D=\{\left.(x,y)\right| 0 \leq y \leq x \leq \frac{\sqrt{2}R}{2}\} D={(x,y)0yx22 R},柱面 x 2 + z 2 = R 2 x^2+z^2=R^2 x2+z2=R2投影到D上的第一卦限的面积为:
S = ∬ D 1 + z x 2 + z y 2 d σ = ∬ D 1 + ( − x R 2 − x 2 ) 2 d σ = ∬ D R R 2 − x 2 d x d y = ∫ 0 2 R 2 d x ∫ 0 x R R 2 − x 2 d y = ∫ 0 2 R 2 d x R x R 2 − x 2 = − R R 2 − x 2 ∣ 0 2 R 2 = ( 1 − 2 2 ) R 2 \begin{aligned} S &= \iint_D \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_D \sqrt{1 + (\frac{-x}{\sqrt{R^2-x^2}})^2} d\sigma \\ &= \iint_D\frac{R}{\sqrt{R^2-x^2}}dxdy \\ &= \int_0^{\frac{\sqrt{2}R}{2}}dx \int_0^x\frac{R}{\sqrt{R^2-x^2}}dy \\ &= \int_0^{\frac{\sqrt{2}R}{2}}dx \frac{Rx}{\sqrt{R^2-x^2}} \\ &=-R\left. \sqrt{R^2-x^2}\right| ^{\frac{\sqrt{2}R}{2}}_{0} \\ &= (1-\frac{\sqrt{2}}{2})R^2 \\ \end{aligned} S=D1+zx2+zy2 dσ=D1+(R2x2 x)2 dσ=DR2x2 Rdxdy=022 Rdx0xR2x2 Rdy=022 RdxR2x2 Rx=RR2x2 022 R=(122 )R2
所以:
S 总 = 8 ∗ 6 ∗ S = ( 48 − 24 2 ) R 2 S_总=8*6*S = (48-24\sqrt{2})R^2 S=86S=(48242 )R2
4. 求由三个柱面 x 2 + y 2 = R 2 x^2+y^2=R^2 x2+y2=R2 y 2 + z 2 = R 2 y^2+z^2=R^2 y2+z2=R2 z 2 + x 2 = R 2 z^2+x^2=R^2 z2+x2=R2所围立体的体积.
解:
画图:
在这里插入图片描述
取第一卦限的观察:
在这里插入图片描述
观察发现,可以分成两个相同的部分:
这六个部分的交点为 ( 2 2 , 2 2 , 2 2 ) (\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) (22 ,22 ,22 )
D = { ( x , y ) ∣ x 2 + y 2 ≤ R 2 , 0 ≤ y ≤ x } D=\{\left.(x,y)\right| x^2+y^2\leq R^2, 0 \leq y \leq x\} D={(x,y)x2+y2R2,0yx},投影到D上的第一卦限的立体的体积为:
V = ∬ D d x d y ∫ 0 R 2 − x 2 d z = ∬ D R 2 − x 2 d x d y = ∫ 0 π 4 d θ ∫ 0 R R 2 − r 2 c o s 2 θ r d r = R 3 3 ∫ 0 π 4 d θ 1 − s i n 3 θ c o s 2 θ = R 3 3 ( t a n θ − c o s − 1 θ − c o s θ ) ∣ 0 π 4 = ( 1 − 2 2 ) R 3 \begin{aligned} V &= \iint_Ddxdy\int_0^{\sqrt{R^2-x^2}}dz \\ &= \iint_D \sqrt{R^2-x^2} dxdy\\ &= \int_0^{\frac{\pi}{4}}d\theta \int_0^R \sqrt{R^2-r^2cos^2\theta} rdr \\ &= \frac{R^3}{3}\int_0^{\frac{\pi}{4}}d\theta \frac{1 - sin^3\theta}{cos^2\theta} \\ &= \frac{R^3}{3}\left.(tan\theta - cos^{-1}\theta -cos\theta) \right| ^{\frac{\pi}{4}}_{0} \\ &= (1-\frac{\sqrt{2}}{2})R^3 \\ \end{aligned} V=Ddxdy0R2x2 dz=DR2x2 dxdy=04πdθ0RR2r2cos2θ rdr=3R304πdθcos2θ1sin3θ=3R3(tanθcos1θcosθ)04π=(122 )R3
所以:
V 总 = 8 ∗ 2 ∗ V = ( 16 − 8 2 ) R 3 V_总=8*2*V = (16-8\sqrt{2})R^3 V=82V=(1682 )R3
5. 求由曲面 x 2 = a 2 − a z x^2=a^2-az x2=a2az x 2 + y 2 = ( a 2 ) 2 x^2+y^2=(\frac{a}{2})^2 x2+y2=(2a)2 z = 0 ( a > 0 ) z=0(a>0) z=0(a>0)所围立体的体积.(提示:用柱坐标)
解:
画图:
在这里插入图片描述
V = ∬ D d x d y ∫ 0 a 2 − x 2 a d z = ∬ D a 2 − x 2 a d x d y = ∫ 0 2 π d θ ∫ 0 a 2 a 2 − ( r c o s θ ) 2 a r d r = ∫ 0 2 π d θ ( a r 2 2 − r 4 c o s 2 θ 4 a ) ∣ 0 a 2 = ∫ 0 2 π ( a 3 8 − a 3 c o s 2 θ 64 ) d θ = ( a 3 θ 8 − a 3 64 ( − s i n 2 θ + 2 θ 4 ) ) ∣ 0 2 π = 15 a 3 π 64 \begin{aligned} V &= \iint_Ddxdy\int_0^{\frac{a^2-x^2}{a}}dz \\ &= \iint_D \frac{a^2-x^2}{a} dxdy\\ &= \int_0^{2\pi}d\theta \int_0^{\frac{a}{2}} \frac{a^2-(rcos\theta)^2}{a} rdr \\ &= \int_0^{2\pi}d\theta (\left.\frac{ar^2}{2}-\frac{r^4cos^2\theta}{4a} \right. )| ^{\frac{a}{2}}_{0} \\ &= \int_0^{2\pi}(\frac{a^3}{8}-\frac{a^3cos^2\theta}{64})d\theta \\ &=\left.(\frac{a^3\theta}{8}-\frac{a^3}{64}(\frac{-sin2\theta+2\theta}{4}) \right. )| ^{2\pi}_{0} \\ &= \frac{15a^3\pi}{64} \\ \end{aligned} V=Ddxdy0aa2x2dz=Daa2x2dxdy=02πdθ02aaa2(rcosθ)2rdr=02πdθ(2ar24ar4cos2θ)02a=02π(8a364a3cos2θ)dθ=(8a3θ64a3(4sin2θ+2θ))02π=6415a3π
6. 设球体 x 2 + y 2 + z 2 ≤ 2 R z ( R > 0 ) x^2+y^2+z^2\leq2Rz(R>0) x2+y2+z22Rz(R>0)上任一点处的体密度等于该点到坐标原点之距离的平方,求该球体的质心坐标.
解:
画图:
在这里插入图片描述
m = ∭ Ω ( x 2 + y 2 + z 2 ) d V m = \iiint_{\Omega}(x^2+y^2+z^2)dV m=Ω(x2+y2+z2)dV
x 0 = ∭ Ω x ( x 2 + y 2 + z 2 ) d V ∭ Ω ( x 2 + y 2 + z 2 ) d V x_0 = \frac{ \iiint_{\Omega}x(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV} x0=Ω(x2+y2+z2)dVΩx(x2+y2+z2)dV
y 0 = ∭ Ω y ( x 2 + y 2 + z 2 ) d V ∭ Ω ( x 2 + y 2 + z 2 ) d V y_0 = \frac{ \iiint_{\Omega}y(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV} y0=Ω(x2+y2+z2)dVΩy(x2+y2+z2)dV
z 0 = ∭ Ω z ( x 2 + y 2 + z 2 ) d V ∭ Ω ( x 2 + y 2 + z 2 ) d V z_0 = \frac{ \iiint_{\Omega}z(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV} z0=Ω(x2+y2+z2)dVΩz(x2+y2+z2)dV
因为该球关于yOz面对称,所以 ∭ Ω x ( x 2 + y 2 + z 2 ) d V = 0 \iiint_{\Omega}x(x^2+y^2+z^2)dV = 0 Ωx(x2+y2+z2)dV=0 x 0 = 0 x_0=0 x0=0
同理因为该球关于xOz面对称,所以 ∭ Ω y ( x 2 + y 2 + z 2 ) d V = 0 \iiint_{\Omega}y(x^2+y^2+z^2)dV = 0 Ωy(x2+y2+z2)dV=0 y 0 = 0 y_0=0 y0=0
∭ Ω ( x 2 + y 2 + z 2 ) d V = ∫ 0 2 π ∫ 0 π 2 ∫ 0 2 R c o s ϕ r 4 s i n ϕ d r d ϕ d θ = 2 π 5 ∫ 0 π 2 ( r 5 s i n ϕ ) ∣ 0 2 R c o s ϕ d ϕ = 64 R 5 π 5 ∫ 0 π 2 c o s 5 ϕ s i n ϕ d ϕ = 64 R 5 π 5 ( − 1 6 c o s 6 ϕ ) ∣ 0 π 2 = 32 R 5 π 15 \begin{aligned} \iiint_{\Omega}(x^2+y^2+z^2)dV &= \int_0^{2\pi}\int_0^{\frac{\pi}{2}}\int_0^{2Rcos\phi}r^4sin\phi drd\phi d\theta \\ &= \frac{2\pi}{5}\int_0^{\frac{\pi}{2}}(r^5sin\phi)|_0^{2Rcos\phi}d\phi\\ &= \frac{64R^5\pi}{5}\int_0^{\frac{\pi}{2}}cos^5\phi sin\phi d\phi\\ &= \frac{64R^5\pi}{5}(-\frac{1}{6}cos^6\phi)|_0^{\frac{\pi}{2}}\\ &= \frac{32R^5\pi}{15} \\ \end{aligned} Ω(x2+y2+z2)dV=02π02π02Rcosϕr4sinϕdrdϕdθ=52π02π(r5sinϕ)02Rcosϕdϕ=564R5π02πcos5ϕsinϕdϕ=564R5π(61cos6ϕ)02π=1532R5π
∭ Ω z ( x 2 + y 2 + z 2 ) d V = ∫ 0 2 π ∫ 0 π 2 ∫ 0 2 R c o s ϕ r 5 c o s ϕ s i n ϕ d r d ϕ d θ = π 3 ∫ 0 π 2 ( r 6 s i n ϕ c o s ϕ ) ∣ 0 2 R c o s ϕ d ϕ = 64 R 6 π 3 ∫ 0 π 2 c o s 7 ϕ s i n ϕ d ϕ = 64 R 6 π 3 ( − 1 8 c o s 8 ϕ ) ∣ 0 π 2 = 8 R 6 π 3 \begin{aligned} \iiint_{\Omega}z(x^2+y^2+z^2)dV &= \int_0^{2\pi}\int_0^{\frac{\pi}{2}}\int_0^{2Rcos\phi}r^5cos\phi sin\phi drd\phi d\theta \\ &= \frac{\pi}{3}\int_0^{\frac{\pi}{2}}(r^6sin\phi cos\phi)|_0^{2Rcos\phi}d\phi\\ &= \frac{64R^6\pi}{3}\int_0^{\frac{\pi}{2}}cos^7\phi sin\phi d\phi\\ &= \frac{64R^6\pi}{3}(-\frac{1}{8}cos^8\phi)|_0^{\frac{\pi}{2}}\\ &= \frac{8R^6\pi}{3} \\ \end{aligned} Ωz(x2+y2+z2)dV=02π02π02Rcosϕr5cosϕsinϕdrdϕdθ=3π02π(r6sinϕcosϕ)02Rcosϕdϕ=364R6π02πcos7ϕsinϕdϕ=364R6π(81cos8ϕ)02π=38R6π
z 0 = ∭ Ω z ( x 2 + y 2 + z 2 ) d V ∭ Ω ( x 2 + y 2 + z 2 ) d V = 8 R 6 π 3 32 R 5 π 15 = 5 R 4 \begin{aligned} z_0 &= \frac{ \iiint_{\Omega}z(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV} \\ &= \frac{\frac{8R^6\pi}{3}}{ \frac{32R^5\pi}{15}}\\ &= \frac{5R}{4} \\ \end{aligned} z0=Ω(x2+y2+z2)dVΩz(x2+y2+z2)dV=1532R5π38R6π=45R
所以质心的坐标为: ( 0 , 0 , 5 R 4 ) (0,0,\frac{5R}{4}) (0,0,45R)
7. 求位于第一卦限中的部分椭球体 x 2 a 2 + y 2 b 2 + z 2 c 2 ≤ 1 ( a > 0 , b > 0 , c > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1(a>0,b>0,c>0) a2x2+b2y2+c2z21(a>0,b>0,c>0)的质心坐标, 这里假定椭球体是均匀的.
解:
x 0 = ∭ Ω x d V ∭ Ω d V x_0 = \frac{ \iiint_{\Omega}xdV}{ \iiint_{\Omega}dV} x0=ΩdVΩxdV
y 0 = ∭ Ω y d V ∭ Ω d V y_0 = \frac{ \iiint_{\Omega}ydV}{ \iiint_{\Omega}dV} y0=ΩdVΩydV
z 0 = ∭ Ω z d V ∭ Ω d V z_0 = \frac{ \iiint_{\Omega}zdV}{ \iiint_{\Omega}dV} z0=ΩdVΩzdV
设: D = { ( x , y ) , x 2 a 2 + y 2 b 2 ≤ 1 − z 2 c 2 } D=\{(x,y),\frac{x^2}{a^2}+\frac{y^2}{b^2} \leq 1 - \frac{z^2}{c^2}\} D={(x,y),a2x2+b2y21c2z2}
∭ Ω d V = 1 4 ∫ 0 c d z ∬ D d x d y = 1 4 ∫ 0 c π a 2 ( 1 − z 2 c 2 ) b 2 ( 1 − z 2 c 2 ) d z = 1 4 ∫ 0 c π a b ( 1 − z 2 c 2 ) d z = a b π 4 ( z − z 3 3 c 2 ) ∣ 0 c = a b c π 6 \begin{aligned} \iiint_{\Omega}dV &= \frac{1}{4} \int_0^cdz\iint_Ddxdy \\ &= \frac{1}{4}\int_0^c \pi\sqrt{a^2(1 - \frac{z^2}{c^2})}\sqrt{b^2(1 - \frac{z^2}{c^2})} dz \\ &= \frac{1}{4}\int_0^c \pi ab (1 - \frac{z^2}{c^2})dz \\ &= \frac{ab\pi}{4}(z-\frac{z^3}{3c^2})|_0^{c}\\ &= \frac{abc\pi}{6} \\ \end{aligned} ΩdV=410cdzDdxdy=410cπa2(1c2z2) b2(1c2z2) dz=410cπab(1c2z2)dz=4abπ(z3c2z3)0c=6abcπ
∭ Ω z d V = 1 4 ∫ 0 c z d z ∬ D d x d y = 1 4 ∫ 0 c z π a 2 ( 1 − z 2 c 2 ) b 2 ( 1 − z 2 c 2 ) d z = 1 4 ∫ 0 c π a b ( 1 − z 2 c 2 ) z d z = a b π 4 ( z 2 2 − z 4 4 c 2 ) ∣ 0 c = a b c 2 π 16 \begin{aligned} \iiint_{\Omega}zdV &= \frac{1}{4} \int_0^c z dz\iint_Ddxdy \\ &= \frac{1}{4}\int_0^c z\pi\sqrt{a^2(1 - \frac{z^2}{c^2})}\sqrt{b^2(1 - \frac{z^2}{c^2})} dz \\ &= \frac{1}{4}\int_0^c \pi ab (1 - \frac{z^2}{c^2})zdz \\ &= \frac{ab\pi}{4}(\frac{z^2}{2}-\frac{z^4}{4c^2})|_0^{c}\\ &= \frac{abc^2\pi}{16} \\ \end{aligned} ΩzdV=410czdzDdxdy=410czπa2(1c2z2) b2(1c2z2) dz=410cπab(1c2z2)zdz=4abπ(2z24c2z4)0c=16abc2π
z 0 = ∭ Ω z d V ∭ Ω d V = a b c 2 π 16 a b c π 6 = 3 c 8 \begin{aligned} z_0 &= \frac{ \iiint_{\Omega}zdV}{ \iiint_{\Omega}dV} \\ &= \frac{\frac{abc^2\pi}{16}}{ \frac{abc\pi}{6}}\\ &= \frac{3c}{8} \\ \end{aligned} z0=ΩdVΩzdV=6abcπ16abc2π=83c
同理, x 0 = 3 a 8 x_0=\frac{3a}{8} x0=83a y 0 = 3 b 8 y_0=\frac{3b}{8} y0=83b,所以,质心为 ( 3 a 8 , 3 b 8 , 3 c 8 ) (\frac{3a}{8},\frac{3b}{8},\frac{3c}{8}) (83a,83b,83c)
8. 求均匀球体对通过其球心的轴的转动惯量.
解:设该均匀球体为 x 2 + y 2 + z 2 ≤ R 2 x^2+y^2+z^2\leq R^2 x2+y2+z2R2,密度为 ρ \rho ρ,轴为z轴
J z = ∭ Ω ( x 2 + y 2 ) ρ d V = ∫ 0 2 π ∫ 0 π ∫ 0 R r 4 s i n 3 ρ ϕ d r d ϕ d θ = 2 π ρ R 5 5 ∫ 0 π R 5 s i n 3 ϕ d ϕ = 2 π ρ R 5 5 ( c o s ϕ − c o s 3 ϕ 3 ) ∣ 0 π = 8 π ρ R 5 15 \begin{aligned} J_z &= \iiint_{\Omega}(x^2+y^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^Rr^4sin^3\rho \phi drd\phi d\theta \\ &= \frac{2\pi \rho R^5}{5}\int_0^{\pi}R^5sin^3\phi d\phi\\ &= \frac{2\pi \rho R^5}{5}(cos\phi - \frac{cos^3\phi}{3})|_0^{\pi}\\ &= \frac{8\pi \rho R^5}{15} \\ \end{aligned} Jz=Ω(x2+y2)ρdV=02π0π0Rr4sin3ρϕdrdϕdθ=52πρR50πR5sin3ϕdϕ=52πρR5(cosϕ3cos3ϕ)0π=158πρR5
所以转动惯量为 8 π ρ R 5 15 \frac{8\pi \rho R^5}{15} 158πρR5
9. 求质量为M的均匀椭圆柱体: x 2 a 2 + y 2 b 2 ≤ 1 ( 0 ≤ z ≤ h ) \frac{x^2}{a^2}+\frac{y^2}{b^2}\leq1(0\leq z\leq h) a2x2+b2y21(0zh)对各坐标轴的转动惯量.
解:
做一个广义柱面坐标系
{ x = a r c o s θ y = b r s i n θ z = z \begin{cases} x = arcos\theta \\ y = brsin\theta \\ z = z\\ \end{cases} x=arcosθy=brsinθz=z
对x轴的转动惯量:
J x = ∭ Ω ( y 2 + z 2 ) ρ d V = ∫ 0 2 π d θ ∫ 0 1 d r ∫ 0 h ( b 2 r 2 s i n 2 θ + z 2 ) a b r ρ d z = a b ρ ∫ 0 2 π d θ ∫ 0 1 d r ( b 2 r 3 s i n 2 θ h + r h 3 3 ) = a b ρ ∫ 0 2 π d θ ( b 2 s i n 2 θ h 4 + h 3 6 ) = a b ρ ( b 2 h π 4 + h 3 π 3 ) = a b h π ρ ( b 2 4 + h 2 3 ) = M ( b 2 4 + h 2 3 ) \begin{aligned} J_x &= \iiint_{\Omega}(y^2+z^2)\rho dV \\ &= \int_0^{2\pi} d\theta\int_0^1 dr\int_0^h(b^2r^2sin^2\theta + z^2)abr\rho dz \\ &= ab\rho\int_0^{2\pi} d\theta\int_0^1 dr(b^2r^3sin^2\theta h + \frac{rh^3}{3}) \\ &= ab\rho\int_0^{2\pi} d\theta(\frac{b^2sin^2\theta h}{4} + \frac{h^3}{6}) \\ &= ab\rho(\frac{b^2h\pi}{4} + \frac{h^3\pi}{3}) \\ &= abh\pi\rho(\frac{b^2}{4} + \frac{h^2}{3}) \\ &= M(\frac{b^2}{4} + \frac{h^2}{3}) \\ \end{aligned} Jx=Ω(y2+z2)ρdV=02πdθ01dr0h(b2r2sin2θ+z2)abrρdz=abρ02πdθ01dr(b2r3sin2θh+3rh3)=abρ02πdθ(4b2sin2θh+6h3)=abρ(4b2hπ+3h3π)=abhπρ(4b2+3h2)=M(4b2+3h2)
对y轴的转动惯量:
J y = ∭ Ω ( x 2 + z 2 ) ρ d V = ∫ 0 2 π d θ ∫ 0 1 d r ∫ 0 h ( a 2 r 2 c o s 2 θ + z 2 ) a b r ρ d z = a b ρ ∫ 0 2 π d θ ∫ 0 1 d r ( a 2 r 3 c o s 2 θ h + r h 3 3 ) = a b ρ ∫ 0 2 π d θ ( a 2 c o s 2 θ h 4 + h 3 6 ) = a b ρ ( a 2 h π 4 + h 3 π 3 ) = a b h π ρ ( a 2 4 + h 2 3 ) = M ( a 2 4 + h 2 3 ) \begin{aligned} J_y &= \iiint_{\Omega}(x^2+z^2)\rho dV \\ &= \int_0^{2\pi} d\theta\int_0^1 dr\int_0^h(a^2r^2cos^2\theta + z^2)abr\rho dz \\ &= ab\rho\int_0^{2\pi} d\theta\int_0^1 dr(a^2r^3cos^2\theta h + \frac{rh^3}{3}) \\ &= ab\rho\int_0^{2\pi} d\theta(\frac{a^2cos^2\theta h}{4} + \frac{h^3}{6}) \\ &= ab\rho(\frac{a^2h\pi}{4} + \frac{h^3\pi}{3}) \\ &= abh\pi\rho(\frac{a^2}{4} + \frac{h^2}{3}) \\ &= M(\frac{a^2}{4} + \frac{h^2}{3}) \\ \end{aligned} Jy=Ω(x2+z2)ρdV=02πdθ01dr0h(a2r2cos2θ+z2)abrρdz=abρ02πdθ01dr(a2r3cos2θh+3rh3)=abρ02πdθ(4a2cos2θh+6h3)=abρ(4a2hπ+3h3π)=abhπρ(4a2+3h2)=M(4a2+3h2)
对z轴的转动惯量:
J z = ∭ Ω ( x 2 + y 2 ) ρ d V = ∫ 0 2 π d θ ∫ 0 1 d r ∫ 0 h ( a 2 r 2 c o s 2 θ + b 2 r 2 s i n 2 θ ) a b r ρ d z = a b h ρ ∫ 0 2 π d θ ∫ 0 1 d r ( a 2 r 3 c o s 2 θ + b 2 r 3 s i n 2 θ ) = a b h ρ 4 ∫ 0 2 π d θ ( a 2 c o s 2 θ + b 2 s i n 2 θ ) = a b h ρ 4 ( a 2 π + b 2 π ) = M ( a 2 + b 2 ) 4 \begin{aligned} J_z &= \iiint_{\Omega}(x^2+y^2)\rho dV \\ &= \int_0^{2\pi} d\theta\int_0^1 dr\int_0^h(a^2r^2cos^2\theta +b^2r^2sin^2\theta)abr\rho dz \\ &= abh\rho\int_0^{2\pi} d\theta\int_0^1 dr(a^2r^3cos^2\theta + b^2r^3sin^2\theta) \\ &= \frac{abh\rho}{4}\int_0^{2\pi} d\theta(a^2cos^2\theta + b^2sin^2\theta) \\ &= \frac{abh\rho}{4}(a^2\pi + b^2\pi) \\ &= \frac{M(a^2+b^2)}{4} \\ \end{aligned} Jz=Ω(x2+y2)ρdV=02πdθ01dr0h(a2r2cos2θ+b2r2sin2θ)abrρdz=abhρ02πdθ01dr(a2r3cos2θ+b2r3sin2θ)=4abhρ02πdθ(a2cos2θ+b2sin2θ)=4abhρ(a2π+b2π)=4M(a2+b2)
10. 求质量为M的均匀椭球体 x 2 a 2 + y 2 b 2 + z 2 c 2 ≤ 1 ( a > 0 , b > 0 , c > 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1(a>0,b>0,c>0) a2x2+b2y2+c2z21(a>0,b>0,c>0)对各坐标轴的转动惯量.
解:
做一个广义球坐标系
{ x = a r s i n ϕ c o s θ y = b r s i n ϕ s i n θ z = c r c o s ϕ \begin{cases} x = arsin\phi cos\theta \\ y = brsin\phi sin\theta \\ z = crcos\phi\\ \end{cases} x=arsinϕcosθy=brsinϕsinθz=crcosϕ
对x轴的转动惯量:
J x = ∭ Ω ( y 2 + z 2 ) ρ d V = ∫ 0 2 π ∫ 0 π ∫ 0 1 ( b 2 r 2 s i n 2 ϕ s i n 2 θ + c 2 r 2 c o s 2 ϕ ) r 2 s i n ϕ a b c ρ d r d ϕ d θ = a b c ρ 5 ∫ 0 2 π ∫ 0 π ( b 2 s i n 2 ϕ s i n 2 θ + c 2 c o s 2 ϕ ) s i n ϕ d ϕ d θ = 2 a b c ρ 15 ∫ 0 2 π ( 2 b 2 s i n 2 θ + c 2 ) d θ = 4 a b c ρ π 15 ( b 2 + c 2 ) = M 5 ( b 2 + c 2 ) \begin{aligned} J_x &= \iiint_{\Omega}(y^2+z^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^1(b^2r^2sin^2\phi sin^2\theta + c^2r^2cos^2\phi)r^2sin\phi abc\rho drd\phi d\theta \\ &= \frac{abc\rho}{5} \int_0^{2\pi}\int_0^{\pi} (b^2sin^2\phi sin^2\theta + c^2cos^2\phi)sin\phi d\phi d\theta \\ &= \frac{2abc\rho}{15} \int_0^{2\pi}(2b^2sin^2\theta + c^2)d\theta \\ &= \frac{4abc\rho \pi}{15} (b^2+c^2) \\ &= \frac{M}{5} (b^2+c^2) \\ \end{aligned} Jx=Ω(y2+z2)ρdV=02π0π01(b2r2sin2ϕsin2θ+c2r2cos2ϕ)r2sinϕabcρdrdϕdθ=5abcρ02π0π(b2sin2ϕsin2θ+c2cos2ϕ)sinϕdϕdθ=152abcρ02π(2b2sin2θ+c2)dθ=154abcρπ(b2+c2)=5M(b2+c2)
对y轴的转动惯量:
J y = ∭ Ω ( x 2 + z 2 ) ρ d V = ∫ 0 2 π ∫ 0 π ∫ 0 1 ( a 2 r 2 s i n 2 ϕ c o s 2 θ + c 2 r 2 c o s 2 ϕ ) r 2 s i n ϕ a b c ρ d r d ϕ d θ = a b c ρ 5 ∫ 0 2 π ∫ 0 π ( a 2 s i n 2 ϕ c o s 2 θ + c 2 c o s 2 ϕ ) s i n ϕ d ϕ d θ = 2 a b c ρ 15 ∫ 0 2 π ( 2 a 2 c o s 2 θ + c 2 ) d θ = 4 a b c ρ π 15 ( a 2 + c 2 ) = M 5 ( a 2 + c 2 ) \begin{aligned} J_y &= \iiint_{\Omega}(x^2+z^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^1(a^2r^2sin^2\phi cos^2\theta + c^2r^2cos^2\phi)r^2sin\phi abc\rho drd\phi d\theta \\ &= \frac{abc\rho}{5} \int_0^{2\pi}\int_0^{\pi} (a^2sin^2\phi cos^2\theta + c^2cos^2\phi)sin\phi d\phi d\theta \\ &= \frac{2abc\rho}{15} \int_0^{2\pi}(2a^2cos^2\theta + c^2)d\theta \\ &= \frac{4abc\rho \pi}{15} (a^2+c^2) \\ &= \frac{M}{5} (a^2+c^2) \\ \end{aligned} Jy=Ω(x2+z2)ρdV=02π0π01(a2r2sin2ϕcos2θ+c2r2cos2ϕ)r2sinϕabcρdrdϕdθ=5abcρ02π0π(a2sin2ϕcos2θ+c2cos2ϕ)sinϕdϕdθ=152abcρ02π(2a2cos2θ+c2)dθ=154abcρπ(a2+c2)=5M(a2+c2)
对z轴的转动惯量:
J z = ∭ Ω ( x 2 + y 2 ) ρ d V = ∫ 0 2 π ∫ 0 π ∫ 0 1 ( a 2 r 2 s i n 2 ϕ c o s 2 θ + b 2 r 2 s i n 2 ϕ s i n 2 θ ) r 2 s i n ϕ a b c ρ d r d ϕ d θ = a b c ρ 5 ∫ 0 2 π ∫ 0 π ( a 2 s i n 2 ϕ c o s 2 θ + b 2 s i n 2 ϕ s i n 2 θ ) s i n ϕ d ϕ d θ = 4 a b c ρ 15 ∫ 0 2 π ( a 2 c o s 2 θ + b 2 s i n 2 θ ) d θ = 4 a b c ρ π 15 ( a 2 + b 2 ) = M 5 ( a 2 + b 2 ) \begin{aligned} J_z &= \iiint_{\Omega}(x^2+y^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^1(a^2r^2sin^2\phi cos^2\theta +b^2r^2sin^2\phi sin^2\theta)r^2sin\phi abc\rho drd\phi d\theta \\ &= \frac{abc\rho}{5} \int_0^{2\pi}\int_0^{\pi} (a^2sin^2\phi cos^2\theta + b^2sin^2\phi sin^2\theta)sin\phi d\phi d\theta \\ &= \frac{4abc\rho}{15} \int_0^{2\pi}(a^2cos^2\theta + b^2sin^2\theta)d\theta \\ &= \frac{4abc\rho \pi}{15} (a^2+b^2) \\ &= \frac{M}{5} (a^2+b^2) \\ \end{aligned} Jz=Ω(x2+y2)ρdV=02π0π01(a2r2sin2ϕcos2θ+b2r2sin2ϕsin2θ)r2sinϕabcρdrdϕdθ=5abcρ02π0π(a2sin2ϕcos2θ+b2sin2ϕsin2θ)sinϕdϕdθ=154abcρ02π(a2cos2θ+b2sin2θ)dθ=154abcρπ(a2+b2)=5M(a2+b2)
11. 求密度为 ρ \rho ρ的均匀圆柱体: x 2 + y 2 ≤ a 2 ( 0 ≤ z ≤ b ) x^2+y^2\leq a^2(0\leq z\leq b) x2+y2a2(0zb),对位于 ( 0 , 0 , h ) (0,0,h) (0,0,h)处的单位质点的引力(h>b).
解:
F x = k ∭ Ω x ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V \begin{aligned} F_x &= k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned} Fx=kΩ(x2+y2+(zh)2 )3xρdV
F y = k ∭ Ω y ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V \begin{aligned} F_y &= k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned} Fy=kΩ(x2+y2+(zh)2 )3yρdV
因为该圆柱体关于yOz面对称,所以 k ∭ Ω x ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V = 0 k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0 kΩ(x2+y2+(zh)2 )3xρdV=0 F x = 0 F_x=0 Fx=0
因为该圆柱体关于xOz面对称,所以 k ∭ Ω y ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V = 0 k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0 kΩ(x2+y2+(zh)2 )3yρdV=0 F y = 0 F_y=0 Fy=0
F z = k ∭ Ω ( z − h ) ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V = k ρ ∫ 0 2 π d θ ∫ 0 a d r ∫ 0 b ( z − h ) ( r 2 + ( z − h ) 2 ) 3 r d z = 2 k ρ π ∫ 0 a { ( r 2 + h 2 ) − 1 2 − [ r 2 + ( b − h ) 2 ] − 1 2 } r d r = 2 k ρ π { ( a 2 + h 2 ) 1 2 − [ a 2 + ( b − h ) 2 ] 1 2 − [ h − ( h − b ) ] } = 2 k ρ π [ a 2 + h 2 − a 2 + ( b − h ) 2 − b ] \begin{aligned} F_z &= k\iiint_{\Omega}\frac{(z-h)}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ &= k\rho \int_0^{2\pi} d\theta\int_0^a dr\int_0^b\frac{(z-h)}{(\sqrt{r^2+(z-h)^2})^3} r dz \\ &= 2k\rho \pi \int_0^a\{(r^2+h^2)^{-\frac{1}{2}} - [r^2+(b-h)^2]^{-\frac{1}{2}}\}r dr \\ &= 2k\rho \pi \{(a^2+h^2)^{\frac{1}{2}} - [a^2+(b-h)^2]^{\frac{1}{2}} - [h - (h-b)]\} \\ &= 2k\rho \pi [\sqrt{a^2+h^2} - \sqrt{a^2+(b-h)^2} - b] \\ \end{aligned} Fz=kΩ(x2+y2+(zh)2 )3(zh)ρdV=kρ02πdθ0adr0b(r2+(zh)2 )3(zh)rdz=2kρπ0a{(r2+h2)21[r2+(bh)2]21}rdr=2kρπ{(a2+h2)21[a2+(bh)2]21[h(hb)]}=2kρπ[a2+h2 a2+(bh)2 b]
12. 求高为h,顶角为 2 α 2\alpha 2α的均匀圆锥体对于位于其顶点的单位质点的引力.
解:
F x = k ∭ Ω x ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V \begin{aligned} F_x &= k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned} Fx=kΩ(x2+y2+(zh)2 )3xρdV
F y = k ∭ Ω y ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V \begin{aligned} F_y &= k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned} Fy=kΩ(x2+y2+(zh)2 )3yρdV
因为该圆锥体关于yOz面对称,所以 k ∭ Ω x ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V = 0 k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0 kΩ(x2+y2+(zh)2 )3xρdV=0 F x = 0 F_x=0 Fx=0
因为该圆锥体关于xOz面对称,所以 k ∭ Ω y ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V = 0 k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0 kΩ(x2+y2+(zh)2 )3yρdV=0 F y = 0 F_y=0 Fy=0
F z = k ∭ Ω ( z − h ) ( x 2 + y 2 + ( z − h ) 2 ) 3 ρ d V = k ρ ∫ 0 h d z ∫ 0 2 π d θ ∫ ( h − z ) t a n α 0 ( z − h ) ( r 2 + ( z − h ) 2 ) 3 r d r = k ρ ∫ 0 h d z ∫ 0 2 π d θ ( h − z ) [ ( z − h ) 2 ] − 1 2 − ( h − z ) [ ( h − z ) 2 ( 1 + t a n 2 α ) ] − 1 2 = 2 k h ρ π ( c o s α − 1 ) \begin{aligned} F_z &= k\iiint_{\Omega}\frac{(z-h)}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ &= k\rho \int_0^hdz\int_0^{2\pi} d\theta\int_{(h-z)tan\alpha}^0\frac{(z-h)}{(\sqrt{r^2+(z-h)^2})^3} r dr \\ &= k\rho \int_0^hdz\int_0^{2\pi} d\theta(h-z)[(z-h)^2]^{-\frac{1}{2}}-(h-z)[(h-z)^2(1+tan^2\alpha)]^{-\frac{1}{2}} \\ &= 2kh\rho \pi(cos\alpha - 1)\\ \end{aligned} Fz=kΩ(x2+y2+(zh)2 )3(zh)ρdV=kρ0hdz02πdθ(hz)tanα0(r2+(zh)2 )3(zh)rdr=kρ0hdz02πdθ(hz)[(zh)2]21(hz)[(hz)2(1+tan2α)]21=2khρπ(cosα1)
13. 证明等式: I l = I l ~ + M d 2 I_l = I_{\tilde{l}} + Md^2 Il=Il~+Md2,其中 I l I_l Il为物体对 l l l轴的转动惯量, I l ~ I_{\tilde{l}} Il~为物体对通过其质心且与 l l l轴平行的 l ~ \tilde{l} l~轴的转动惯量,d为两轴间的距离,M是物体的质量.(提示:将 l l l轴取成z轴,假定此时物体的质心坐标为 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),则应有 x 0 2 + y 0 2 = d 2 x_0^2+y_0^2=d^2 x02+y02=d2.)
证明:
I l ~ I_{\tilde{l}} Il~轴取成z轴,假定此时物体的质心坐标为 ( 0 , 0 , 0 ) (0,0,0) (0,0,0).
I l = ∭ Ω ( x 2 + ( y + d ) 2 ) ρ ( x , y , z ) d V = ∭ Ω ( x 2 + y 2 + 2 y d + d 2 ) ρ ( x , y , z ) d V = ∭ Ω ( x 2 + y 2 ) ρ ( x , y , z ) d V + ∭ Ω 2 y d ρ ( x , y , z ) d V + ∭ Ω d 2 d V = I l ~ + 2 y 0 M d + M d 2 = I l ~ + M d 2 \begin{aligned} I_l &= \iiint_{\Omega}(x^2+(y+d)^2)\rho(x,y,z) dV \\ &= \iiint_{\Omega}(x^2+y^2+2yd+d^2)\rho(x,y,z) dV \\ &= \iiint_{\Omega}(x^2+y^2)\rho(x,y,z)dV + \iiint_{\Omega}2yd\rho(x,y,z)dV + \iiint_{\Omega}d^2dV \\ &= I_{\tilde{l}} + 2y_0Md + Md^2\\ &= I_{\tilde{l}} + Md^2\\ \end{aligned} Il=Ω(x2+(y+d)2)ρ(x,y,z)dV=Ω(x2+y2+2yd+d2)ρ(x,y,z)dV=Ω(x2+y2)ρ(x,y,z)dV+Ω2ydρ(x,y,z)dV+Ωd2dV=Il~+2y0Md+Md2=Il~+Md2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值