1.求由上半球面
z
=
3
a
2
−
x
2
−
y
2
z=\sqrt{3a^2-x^2-y^2}
z=3a2−x2−y2及旋转抛物面
x
2
+
y
2
=
2
a
z
x^2+y^2=2az
x2+y2=2az所围立体的表面积(a>0).
解:
画图:
解方程:
3
a
2
−
x
2
−
y
2
=
x
2
+
y
2
2
a
3
a
2
−
x
2
−
y
2
=
(
x
2
+
y
2
)
2
4
a
2
12
a
4
−
4
a
2
(
x
2
+
y
2
)
=
(
x
2
+
y
2
)
2
[
(
x
2
+
y
2
)
+
6
a
2
]
[
(
x
2
+
y
2
−
2
a
2
)
]
=
0
x
2
+
y
2
=
2
a
2
\begin{aligned} \sqrt{3a^2-x^2-y^2} &= \frac{x^2+y^2}{2a} \\ 3a^2-x^2-y^2&= \frac{(x^2+y^2)^2}{4a^2} \\ 12a^4-4a^2(x^2+y^2) &= (x^2+y^2)^2 \\ [(x^2+y^2)+6a^2][(x^2+y^2-2a^2)] &= 0 \\ x^2+y^2 &= 2a^2 \end{aligned}
3a2−x2−y23a2−x2−y212a4−4a2(x2+y2)[(x2+y2)+6a2][(x2+y2−2a2)]x2+y2=2ax2+y2=4a2(x2+y2)2=(x2+y2)2=0=2a2
上半部分:
S
1
=
∬
x
2
+
y
2
≤
2
a
2
1
+
z
x
2
+
z
y
2
d
σ
=
∬
x
2
+
y
2
≤
2
a
2
1
+
(
−
x
3
a
2
−
x
2
−
y
2
)
2
+
(
−
y
3
a
2
−
x
2
−
y
2
)
2
d
σ
=
∬
x
2
+
y
2
≤
2
a
2
3
a
3
a
2
−
x
2
−
y
2
d
σ
=
∫
0
2
π
d
θ
∫
0
2
a
r
d
r
3
a
3
a
2
−
r
2
=
2
3
π
a
∫
0
2
a
r
d
r
1
3
a
2
−
r
2
=
−
2
3
π
a
3
a
2
−
r
2
∣
0
2
a
=
−
2
3
π
a
2
+
6
π
a
2
\begin{aligned} S_1 &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1 + (\frac{-x}{\sqrt{3a^2-x^2-y^2}})^2 + (\frac{-y}{\sqrt{3a^2-x^2-y^2}})^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \frac{\sqrt{3}a}{\sqrt{3a^2-x^2-y^2}}d\sigma \\ &= \int^{2\pi}_{0}d\theta\int^{\sqrt{2}a}_{0}rdr\frac{\sqrt{3}a}{\sqrt{3a^2-r^2}} \\ &= 2\sqrt{3}\pi a\int^{\sqrt{2}a}_{0}rdr\frac{1}{\sqrt{3a^2-r^2}} \\ &= -2\sqrt{3}\pi a\left. \sqrt{3a^2-r^2}\right| ^{\sqrt{2}a}_{0} \\ &= -2\sqrt{3}\pi a^2 + 6\pi a^2 \\ \end{aligned}
S1=∬x2+y2≤2a21+zx2+zy2dσ=∬x2+y2≤2a21+(3a2−x2−y2−x)2+(3a2−x2−y2−y)2dσ=∬x2+y2≤2a23a2−x2−y23adσ=∫02πdθ∫02ardr3a2−r23a=23πa∫02ardr3a2−r21=−23πa3a2−r2∣∣∣02a=−23πa2+6πa2
下半部分:
S
2
=
∬
x
2
+
y
2
≤
2
a
2
1
+
z
x
2
+
z
y
2
d
σ
=
∬
x
2
+
y
2
≤
2
a
2
1
+
(
x
a
)
2
+
(
y
a
)
2
d
σ
=
∬
x
2
+
y
2
≤
2
a
2
a
2
+
x
2
+
y
2
a
d
σ
=
∫
0
2
π
d
θ
∫
0
2
a
r
d
r
a
2
+
r
2
a
=
2
π
a
∫
0
2
a
r
d
r
a
2
+
r
2
=
2
π
3
a
(
a
2
+
r
2
)
3
2
∣
0
2
a
=
2
3
π
a
2
−
2
3
π
a
2
\begin{aligned} S_2 &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \sqrt{1 + (\frac{x}{a})^2 + (\frac{y}{a})^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2a^2} \frac{\sqrt{a^2+x^2+y^2}}{a}d\sigma \\ &= \int^{2\pi}_{0}d\theta\int^{\sqrt{2}a}_{0}rdr\frac{\sqrt{a^2+r^2}}{a} \\ &= \frac{2\pi}{a}\int^{\sqrt{2}a}_{0}rdr\sqrt{a^2+r^2} \\ &= \frac{2\pi}{3a}\left. (a^2+r^2)^{\frac{3}{2}}\right| ^{\sqrt{2}a}_{0} \\ &= 2\sqrt{3}\pi a^2 - \frac{2}{3}\pi a^2 \\ \end{aligned}
S2=∬x2+y2≤2a21+zx2+zy2dσ=∬x2+y2≤2a21+(ax)2+(ay)2dσ=∬x2+y2≤2a2aa2+x2+y2dσ=∫02πdθ∫02ardraa2+r2=a2π∫02ardra2+r2=3a2π(a2+r2)23∣∣∣02a=23πa2−32πa2
总:
S
=
S
1
+
S
2
=
16
3
π
a
2
\begin{aligned} S &= S_1+S_2 \\ &= \frac{16}{3}\pi a^2 \\ \end{aligned}
S=S1+S2=316πa2
2. 求锥面
z
=
x
2
+
y
2
z=\sqrt{x^2+y^2}
z=x2+y2被柱面
z
2
=
2
x
z^2=2x
z2=2x所割部分的曲面面积
解:
画图:
积分:
S
=
∬
x
2
+
y
2
≤
2
x
1
+
z
x
2
+
z
y
2
d
σ
=
∬
x
2
+
y
2
≤
2
x
1
+
(
x
x
2
+
y
2
)
2
+
(
y
x
2
+
y
2
)
2
d
σ
=
∬
x
2
+
y
2
≤
2
x
2
d
σ
=
2
π
\begin{aligned} S &= \iint_{x^2+y^2 \leq 2x} \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2x} \sqrt{1 + (\frac{x}{\sqrt{x^2+y^2}})^2 + (\frac{y}{\sqrt{x^2+y^2}})^2}d\sigma \\ &= \iint_{x^2+y^2 \leq 2x}\sqrt{2}d\sigma \\ &= \sqrt{2}\pi\\ \end{aligned}
S=∬x2+y2≤2x1+zx2+zy2dσ=∬x2+y2≤2x1+(x2+y2x)2+(x2+y2y)2dσ=∬x2+y2≤2x2dσ=2π
3. 求由三个圆柱面
x
2
+
y
2
=
R
2
x^2+y^2=R^2
x2+y2=R2,
x
2
+
z
2
=
R
2
x^2+z^2=R^2
x2+z2=R2,
y
2
+
z
2
=
R
2
y^2+z^2=R^2
y2+z2=R2所围立体的表面积.
解:
画图:
取第一卦限的观察:
观察发现由相同的六个部分组成:
这六个部分的交点为
(
2
2
,
2
2
,
2
2
)
(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})
(22,22,22)
设
D
=
{
(
x
,
y
)
∣
0
≤
y
≤
x
≤
2
R
2
}
D=\{\left.(x,y)\right| 0 \leq y \leq x \leq \frac{\sqrt{2}R}{2}\}
D={(x,y)∣0≤y≤x≤22R},柱面
x
2
+
z
2
=
R
2
x^2+z^2=R^2
x2+z2=R2投影到D上的第一卦限的面积为:
S
=
∬
D
1
+
z
x
2
+
z
y
2
d
σ
=
∬
D
1
+
(
−
x
R
2
−
x
2
)
2
d
σ
=
∬
D
R
R
2
−
x
2
d
x
d
y
=
∫
0
2
R
2
d
x
∫
0
x
R
R
2
−
x
2
d
y
=
∫
0
2
R
2
d
x
R
x
R
2
−
x
2
=
−
R
R
2
−
x
2
∣
0
2
R
2
=
(
1
−
2
2
)
R
2
\begin{aligned} S &= \iint_D \sqrt{1+z_x^2+z_y^2}d\sigma \\ &= \iint_D \sqrt{1 + (\frac{-x}{\sqrt{R^2-x^2}})^2} d\sigma \\ &= \iint_D\frac{R}{\sqrt{R^2-x^2}}dxdy \\ &= \int_0^{\frac{\sqrt{2}R}{2}}dx \int_0^x\frac{R}{\sqrt{R^2-x^2}}dy \\ &= \int_0^{\frac{\sqrt{2}R}{2}}dx \frac{Rx}{\sqrt{R^2-x^2}} \\ &=-R\left. \sqrt{R^2-x^2}\right| ^{\frac{\sqrt{2}R}{2}}_{0} \\ &= (1-\frac{\sqrt{2}}{2})R^2 \\ \end{aligned}
S=∬D1+zx2+zy2dσ=∬D1+(R2−x2−x)2dσ=∬DR2−x2Rdxdy=∫022Rdx∫0xR2−x2Rdy=∫022RdxR2−x2Rx=−RR2−x2∣∣∣022R=(1−22)R2
所以:
S
总
=
8
∗
6
∗
S
=
(
48
−
24
2
)
R
2
S_总=8*6*S = (48-24\sqrt{2})R^2
S总=8∗6∗S=(48−242)R2
4. 求由三个柱面
x
2
+
y
2
=
R
2
x^2+y^2=R^2
x2+y2=R2,
y
2
+
z
2
=
R
2
y^2+z^2=R^2
y2+z2=R2,
z
2
+
x
2
=
R
2
z^2+x^2=R^2
z2+x2=R2所围立体的体积.
解:
画图:
取第一卦限的观察:
观察发现,可以分成两个相同的部分:
这六个部分的交点为
(
2
2
,
2
2
,
2
2
)
(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})
(22,22,22)
设
D
=
{
(
x
,
y
)
∣
x
2
+
y
2
≤
R
2
,
0
≤
y
≤
x
}
D=\{\left.(x,y)\right| x^2+y^2\leq R^2, 0 \leq y \leq x\}
D={(x,y)∣x2+y2≤R2,0≤y≤x},投影到D上的第一卦限的立体的体积为:
V
=
∬
D
d
x
d
y
∫
0
R
2
−
x
2
d
z
=
∬
D
R
2
−
x
2
d
x
d
y
=
∫
0
π
4
d
θ
∫
0
R
R
2
−
r
2
c
o
s
2
θ
r
d
r
=
R
3
3
∫
0
π
4
d
θ
1
−
s
i
n
3
θ
c
o
s
2
θ
=
R
3
3
(
t
a
n
θ
−
c
o
s
−
1
θ
−
c
o
s
θ
)
∣
0
π
4
=
(
1
−
2
2
)
R
3
\begin{aligned} V &= \iint_Ddxdy\int_0^{\sqrt{R^2-x^2}}dz \\ &= \iint_D \sqrt{R^2-x^2} dxdy\\ &= \int_0^{\frac{\pi}{4}}d\theta \int_0^R \sqrt{R^2-r^2cos^2\theta} rdr \\ &= \frac{R^3}{3}\int_0^{\frac{\pi}{4}}d\theta \frac{1 - sin^3\theta}{cos^2\theta} \\ &= \frac{R^3}{3}\left.(tan\theta - cos^{-1}\theta -cos\theta) \right| ^{\frac{\pi}{4}}_{0} \\ &= (1-\frac{\sqrt{2}}{2})R^3 \\ \end{aligned}
V=∬Ddxdy∫0R2−x2dz=∬DR2−x2dxdy=∫04πdθ∫0RR2−r2cos2θrdr=3R3∫04πdθcos2θ1−sin3θ=3R3(tanθ−cos−1θ−cosθ)∣∣04π=(1−22)R3
所以:
V
总
=
8
∗
2
∗
V
=
(
16
−
8
2
)
R
3
V_总=8*2*V = (16-8\sqrt{2})R^3
V总=8∗2∗V=(16−82)R3
5. 求由曲面
x
2
=
a
2
−
a
z
x^2=a^2-az
x2=a2−az,
x
2
+
y
2
=
(
a
2
)
2
x^2+y^2=(\frac{a}{2})^2
x2+y2=(2a)2,
z
=
0
(
a
>
0
)
z=0(a>0)
z=0(a>0)所围立体的体积.(提示:用柱坐标)
解:
画图:
V
=
∬
D
d
x
d
y
∫
0
a
2
−
x
2
a
d
z
=
∬
D
a
2
−
x
2
a
d
x
d
y
=
∫
0
2
π
d
θ
∫
0
a
2
a
2
−
(
r
c
o
s
θ
)
2
a
r
d
r
=
∫
0
2
π
d
θ
(
a
r
2
2
−
r
4
c
o
s
2
θ
4
a
)
∣
0
a
2
=
∫
0
2
π
(
a
3
8
−
a
3
c
o
s
2
θ
64
)
d
θ
=
(
a
3
θ
8
−
a
3
64
(
−
s
i
n
2
θ
+
2
θ
4
)
)
∣
0
2
π
=
15
a
3
π
64
\begin{aligned} V &= \iint_Ddxdy\int_0^{\frac{a^2-x^2}{a}}dz \\ &= \iint_D \frac{a^2-x^2}{a} dxdy\\ &= \int_0^{2\pi}d\theta \int_0^{\frac{a}{2}} \frac{a^2-(rcos\theta)^2}{a} rdr \\ &= \int_0^{2\pi}d\theta (\left.\frac{ar^2}{2}-\frac{r^4cos^2\theta}{4a} \right. )| ^{\frac{a}{2}}_{0} \\ &= \int_0^{2\pi}(\frac{a^3}{8}-\frac{a^3cos^2\theta}{64})d\theta \\ &=\left.(\frac{a^3\theta}{8}-\frac{a^3}{64}(\frac{-sin2\theta+2\theta}{4}) \right. )| ^{2\pi}_{0} \\ &= \frac{15a^3\pi}{64} \\ \end{aligned}
V=∬Ddxdy∫0aa2−x2dz=∬Daa2−x2dxdy=∫02πdθ∫02aaa2−(rcosθ)2rdr=∫02πdθ(2ar2−4ar4cos2θ)∣02a=∫02π(8a3−64a3cos2θ)dθ=(8a3θ−64a3(4−sin2θ+2θ))∣02π=6415a3π
6. 设球体
x
2
+
y
2
+
z
2
≤
2
R
z
(
R
>
0
)
x^2+y^2+z^2\leq2Rz(R>0)
x2+y2+z2≤2Rz(R>0)上任一点处的体密度等于该点到坐标原点之距离的平方,求该球体的质心坐标.
解:
画图:
m
=
∭
Ω
(
x
2
+
y
2
+
z
2
)
d
V
m = \iiint_{\Omega}(x^2+y^2+z^2)dV
m=∭Ω(x2+y2+z2)dV
x
0
=
∭
Ω
x
(
x
2
+
y
2
+
z
2
)
d
V
∭
Ω
(
x
2
+
y
2
+
z
2
)
d
V
x_0 = \frac{ \iiint_{\Omega}x(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV}
x0=∭Ω(x2+y2+z2)dV∭Ωx(x2+y2+z2)dV
y
0
=
∭
Ω
y
(
x
2
+
y
2
+
z
2
)
d
V
∭
Ω
(
x
2
+
y
2
+
z
2
)
d
V
y_0 = \frac{ \iiint_{\Omega}y(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV}
y0=∭Ω(x2+y2+z2)dV∭Ωy(x2+y2+z2)dV
z
0
=
∭
Ω
z
(
x
2
+
y
2
+
z
2
)
d
V
∭
Ω
(
x
2
+
y
2
+
z
2
)
d
V
z_0 = \frac{ \iiint_{\Omega}z(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV}
z0=∭Ω(x2+y2+z2)dV∭Ωz(x2+y2+z2)dV
因为该球关于yOz面对称,所以
∭
Ω
x
(
x
2
+
y
2
+
z
2
)
d
V
=
0
\iiint_{\Omega}x(x^2+y^2+z^2)dV = 0
∭Ωx(x2+y2+z2)dV=0,
x
0
=
0
x_0=0
x0=0
同理因为该球关于xOz面对称,所以
∭
Ω
y
(
x
2
+
y
2
+
z
2
)
d
V
=
0
\iiint_{\Omega}y(x^2+y^2+z^2)dV = 0
∭Ωy(x2+y2+z2)dV=0,
y
0
=
0
y_0=0
y0=0
∭
Ω
(
x
2
+
y
2
+
z
2
)
d
V
=
∫
0
2
π
∫
0
π
2
∫
0
2
R
c
o
s
ϕ
r
4
s
i
n
ϕ
d
r
d
ϕ
d
θ
=
2
π
5
∫
0
π
2
(
r
5
s
i
n
ϕ
)
∣
0
2
R
c
o
s
ϕ
d
ϕ
=
64
R
5
π
5
∫
0
π
2
c
o
s
5
ϕ
s
i
n
ϕ
d
ϕ
=
64
R
5
π
5
(
−
1
6
c
o
s
6
ϕ
)
∣
0
π
2
=
32
R
5
π
15
\begin{aligned} \iiint_{\Omega}(x^2+y^2+z^2)dV &= \int_0^{2\pi}\int_0^{\frac{\pi}{2}}\int_0^{2Rcos\phi}r^4sin\phi drd\phi d\theta \\ &= \frac{2\pi}{5}\int_0^{\frac{\pi}{2}}(r^5sin\phi)|_0^{2Rcos\phi}d\phi\\ &= \frac{64R^5\pi}{5}\int_0^{\frac{\pi}{2}}cos^5\phi sin\phi d\phi\\ &= \frac{64R^5\pi}{5}(-\frac{1}{6}cos^6\phi)|_0^{\frac{\pi}{2}}\\ &= \frac{32R^5\pi}{15} \\ \end{aligned}
∭Ω(x2+y2+z2)dV=∫02π∫02π∫02Rcosϕr4sinϕdrdϕdθ=52π∫02π(r5sinϕ)∣02Rcosϕdϕ=564R5π∫02πcos5ϕsinϕdϕ=564R5π(−61cos6ϕ)∣02π=1532R5π
∭
Ω
z
(
x
2
+
y
2
+
z
2
)
d
V
=
∫
0
2
π
∫
0
π
2
∫
0
2
R
c
o
s
ϕ
r
5
c
o
s
ϕ
s
i
n
ϕ
d
r
d
ϕ
d
θ
=
π
3
∫
0
π
2
(
r
6
s
i
n
ϕ
c
o
s
ϕ
)
∣
0
2
R
c
o
s
ϕ
d
ϕ
=
64
R
6
π
3
∫
0
π
2
c
o
s
7
ϕ
s
i
n
ϕ
d
ϕ
=
64
R
6
π
3
(
−
1
8
c
o
s
8
ϕ
)
∣
0
π
2
=
8
R
6
π
3
\begin{aligned} \iiint_{\Omega}z(x^2+y^2+z^2)dV &= \int_0^{2\pi}\int_0^{\frac{\pi}{2}}\int_0^{2Rcos\phi}r^5cos\phi sin\phi drd\phi d\theta \\ &= \frac{\pi}{3}\int_0^{\frac{\pi}{2}}(r^6sin\phi cos\phi)|_0^{2Rcos\phi}d\phi\\ &= \frac{64R^6\pi}{3}\int_0^{\frac{\pi}{2}}cos^7\phi sin\phi d\phi\\ &= \frac{64R^6\pi}{3}(-\frac{1}{8}cos^8\phi)|_0^{\frac{\pi}{2}}\\ &= \frac{8R^6\pi}{3} \\ \end{aligned}
∭Ωz(x2+y2+z2)dV=∫02π∫02π∫02Rcosϕr5cosϕsinϕdrdϕdθ=3π∫02π(r6sinϕcosϕ)∣02Rcosϕdϕ=364R6π∫02πcos7ϕsinϕdϕ=364R6π(−81cos8ϕ)∣02π=38R6π
z
0
=
∭
Ω
z
(
x
2
+
y
2
+
z
2
)
d
V
∭
Ω
(
x
2
+
y
2
+
z
2
)
d
V
=
8
R
6
π
3
32
R
5
π
15
=
5
R
4
\begin{aligned} z_0 &= \frac{ \iiint_{\Omega}z(x^2+y^2+z^2)dV}{ \iiint_{\Omega}(x^2+y^2+z^2)dV} \\ &= \frac{\frac{8R^6\pi}{3}}{ \frac{32R^5\pi}{15}}\\ &= \frac{5R}{4} \\ \end{aligned}
z0=∭Ω(x2+y2+z2)dV∭Ωz(x2+y2+z2)dV=1532R5π38R6π=45R
所以质心的坐标为:
(
0
,
0
,
5
R
4
)
(0,0,\frac{5R}{4})
(0,0,45R)
7. 求位于第一卦限中的部分椭球体
x
2
a
2
+
y
2
b
2
+
z
2
c
2
≤
1
(
a
>
0
,
b
>
0
,
c
>
0
)
\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1(a>0,b>0,c>0)
a2x2+b2y2+c2z2≤1(a>0,b>0,c>0)的质心坐标, 这里假定椭球体是均匀的.
解:
x
0
=
∭
Ω
x
d
V
∭
Ω
d
V
x_0 = \frac{ \iiint_{\Omega}xdV}{ \iiint_{\Omega}dV}
x0=∭ΩdV∭ΩxdV
y
0
=
∭
Ω
y
d
V
∭
Ω
d
V
y_0 = \frac{ \iiint_{\Omega}ydV}{ \iiint_{\Omega}dV}
y0=∭ΩdV∭ΩydV
z
0
=
∭
Ω
z
d
V
∭
Ω
d
V
z_0 = \frac{ \iiint_{\Omega}zdV}{ \iiint_{\Omega}dV}
z0=∭ΩdV∭ΩzdV
设:
D
=
{
(
x
,
y
)
,
x
2
a
2
+
y
2
b
2
≤
1
−
z
2
c
2
}
D=\{(x,y),\frac{x^2}{a^2}+\frac{y^2}{b^2} \leq 1 - \frac{z^2}{c^2}\}
D={(x,y),a2x2+b2y2≤1−c2z2}
∭
Ω
d
V
=
1
4
∫
0
c
d
z
∬
D
d
x
d
y
=
1
4
∫
0
c
π
a
2
(
1
−
z
2
c
2
)
b
2
(
1
−
z
2
c
2
)
d
z
=
1
4
∫
0
c
π
a
b
(
1
−
z
2
c
2
)
d
z
=
a
b
π
4
(
z
−
z
3
3
c
2
)
∣
0
c
=
a
b
c
π
6
\begin{aligned} \iiint_{\Omega}dV &= \frac{1}{4} \int_0^cdz\iint_Ddxdy \\ &= \frac{1}{4}\int_0^c \pi\sqrt{a^2(1 - \frac{z^2}{c^2})}\sqrt{b^2(1 - \frac{z^2}{c^2})} dz \\ &= \frac{1}{4}\int_0^c \pi ab (1 - \frac{z^2}{c^2})dz \\ &= \frac{ab\pi}{4}(z-\frac{z^3}{3c^2})|_0^{c}\\ &= \frac{abc\pi}{6} \\ \end{aligned}
∭ΩdV=41∫0cdz∬Ddxdy=41∫0cπa2(1−c2z2)b2(1−c2z2)dz=41∫0cπab(1−c2z2)dz=4abπ(z−3c2z3)∣0c=6abcπ
∭
Ω
z
d
V
=
1
4
∫
0
c
z
d
z
∬
D
d
x
d
y
=
1
4
∫
0
c
z
π
a
2
(
1
−
z
2
c
2
)
b
2
(
1
−
z
2
c
2
)
d
z
=
1
4
∫
0
c
π
a
b
(
1
−
z
2
c
2
)
z
d
z
=
a
b
π
4
(
z
2
2
−
z
4
4
c
2
)
∣
0
c
=
a
b
c
2
π
16
\begin{aligned} \iiint_{\Omega}zdV &= \frac{1}{4} \int_0^c z dz\iint_Ddxdy \\ &= \frac{1}{4}\int_0^c z\pi\sqrt{a^2(1 - \frac{z^2}{c^2})}\sqrt{b^2(1 - \frac{z^2}{c^2})} dz \\ &= \frac{1}{4}\int_0^c \pi ab (1 - \frac{z^2}{c^2})zdz \\ &= \frac{ab\pi}{4}(\frac{z^2}{2}-\frac{z^4}{4c^2})|_0^{c}\\ &= \frac{abc^2\pi}{16} \\ \end{aligned}
∭ΩzdV=41∫0czdz∬Ddxdy=41∫0czπa2(1−c2z2)b2(1−c2z2)dz=41∫0cπab(1−c2z2)zdz=4abπ(2z2−4c2z4)∣0c=16abc2π
z
0
=
∭
Ω
z
d
V
∭
Ω
d
V
=
a
b
c
2
π
16
a
b
c
π
6
=
3
c
8
\begin{aligned} z_0 &= \frac{ \iiint_{\Omega}zdV}{ \iiint_{\Omega}dV} \\ &= \frac{\frac{abc^2\pi}{16}}{ \frac{abc\pi}{6}}\\ &= \frac{3c}{8} \\ \end{aligned}
z0=∭ΩdV∭ΩzdV=6abcπ16abc2π=83c
同理,
x
0
=
3
a
8
x_0=\frac{3a}{8}
x0=83a,
y
0
=
3
b
8
y_0=\frac{3b}{8}
y0=83b,所以,质心为
(
3
a
8
,
3
b
8
,
3
c
8
)
(\frac{3a}{8},\frac{3b}{8},\frac{3c}{8})
(83a,83b,83c)
8. 求均匀球体对通过其球心的轴的转动惯量.
解:设该均匀球体为
x
2
+
y
2
+
z
2
≤
R
2
x^2+y^2+z^2\leq R^2
x2+y2+z2≤R2,密度为
ρ
\rho
ρ,轴为z轴
J
z
=
∭
Ω
(
x
2
+
y
2
)
ρ
d
V
=
∫
0
2
π
∫
0
π
∫
0
R
r
4
s
i
n
3
ρ
ϕ
d
r
d
ϕ
d
θ
=
2
π
ρ
R
5
5
∫
0
π
R
5
s
i
n
3
ϕ
d
ϕ
=
2
π
ρ
R
5
5
(
c
o
s
ϕ
−
c
o
s
3
ϕ
3
)
∣
0
π
=
8
π
ρ
R
5
15
\begin{aligned} J_z &= \iiint_{\Omega}(x^2+y^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^Rr^4sin^3\rho \phi drd\phi d\theta \\ &= \frac{2\pi \rho R^5}{5}\int_0^{\pi}R^5sin^3\phi d\phi\\ &= \frac{2\pi \rho R^5}{5}(cos\phi - \frac{cos^3\phi}{3})|_0^{\pi}\\ &= \frac{8\pi \rho R^5}{15} \\ \end{aligned}
Jz=∭Ω(x2+y2)ρdV=∫02π∫0π∫0Rr4sin3ρϕdrdϕdθ=52πρR5∫0πR5sin3ϕdϕ=52πρR5(cosϕ−3cos3ϕ)∣0π=158πρR5
所以转动惯量为
8
π
ρ
R
5
15
\frac{8\pi \rho R^5}{15}
158πρR5
9. 求质量为M的均匀椭圆柱体:
x
2
a
2
+
y
2
b
2
≤
1
(
0
≤
z
≤
h
)
\frac{x^2}{a^2}+\frac{y^2}{b^2}\leq1(0\leq z\leq h)
a2x2+b2y2≤1(0≤z≤h)对各坐标轴的转动惯量.
解:
做一个广义柱面坐标系
{
x
=
a
r
c
o
s
θ
y
=
b
r
s
i
n
θ
z
=
z
\begin{cases} x = arcos\theta \\ y = brsin\theta \\ z = z\\ \end{cases}
⎩⎪⎨⎪⎧x=arcosθy=brsinθz=z
对x轴的转动惯量:
J
x
=
∭
Ω
(
y
2
+
z
2
)
ρ
d
V
=
∫
0
2
π
d
θ
∫
0
1
d
r
∫
0
h
(
b
2
r
2
s
i
n
2
θ
+
z
2
)
a
b
r
ρ
d
z
=
a
b
ρ
∫
0
2
π
d
θ
∫
0
1
d
r
(
b
2
r
3
s
i
n
2
θ
h
+
r
h
3
3
)
=
a
b
ρ
∫
0
2
π
d
θ
(
b
2
s
i
n
2
θ
h
4
+
h
3
6
)
=
a
b
ρ
(
b
2
h
π
4
+
h
3
π
3
)
=
a
b
h
π
ρ
(
b
2
4
+
h
2
3
)
=
M
(
b
2
4
+
h
2
3
)
\begin{aligned} J_x &= \iiint_{\Omega}(y^2+z^2)\rho dV \\ &= \int_0^{2\pi} d\theta\int_0^1 dr\int_0^h(b^2r^2sin^2\theta + z^2)abr\rho dz \\ &= ab\rho\int_0^{2\pi} d\theta\int_0^1 dr(b^2r^3sin^2\theta h + \frac{rh^3}{3}) \\ &= ab\rho\int_0^{2\pi} d\theta(\frac{b^2sin^2\theta h}{4} + \frac{h^3}{6}) \\ &= ab\rho(\frac{b^2h\pi}{4} + \frac{h^3\pi}{3}) \\ &= abh\pi\rho(\frac{b^2}{4} + \frac{h^2}{3}) \\ &= M(\frac{b^2}{4} + \frac{h^2}{3}) \\ \end{aligned}
Jx=∭Ω(y2+z2)ρdV=∫02πdθ∫01dr∫0h(b2r2sin2θ+z2)abrρdz=abρ∫02πdθ∫01dr(b2r3sin2θh+3rh3)=abρ∫02πdθ(4b2sin2θh+6h3)=abρ(4b2hπ+3h3π)=abhπρ(4b2+3h2)=M(4b2+3h2)
对y轴的转动惯量:
J
y
=
∭
Ω
(
x
2
+
z
2
)
ρ
d
V
=
∫
0
2
π
d
θ
∫
0
1
d
r
∫
0
h
(
a
2
r
2
c
o
s
2
θ
+
z
2
)
a
b
r
ρ
d
z
=
a
b
ρ
∫
0
2
π
d
θ
∫
0
1
d
r
(
a
2
r
3
c
o
s
2
θ
h
+
r
h
3
3
)
=
a
b
ρ
∫
0
2
π
d
θ
(
a
2
c
o
s
2
θ
h
4
+
h
3
6
)
=
a
b
ρ
(
a
2
h
π
4
+
h
3
π
3
)
=
a
b
h
π
ρ
(
a
2
4
+
h
2
3
)
=
M
(
a
2
4
+
h
2
3
)
\begin{aligned} J_y &= \iiint_{\Omega}(x^2+z^2)\rho dV \\ &= \int_0^{2\pi} d\theta\int_0^1 dr\int_0^h(a^2r^2cos^2\theta + z^2)abr\rho dz \\ &= ab\rho\int_0^{2\pi} d\theta\int_0^1 dr(a^2r^3cos^2\theta h + \frac{rh^3}{3}) \\ &= ab\rho\int_0^{2\pi} d\theta(\frac{a^2cos^2\theta h}{4} + \frac{h^3}{6}) \\ &= ab\rho(\frac{a^2h\pi}{4} + \frac{h^3\pi}{3}) \\ &= abh\pi\rho(\frac{a^2}{4} + \frac{h^2}{3}) \\ &= M(\frac{a^2}{4} + \frac{h^2}{3}) \\ \end{aligned}
Jy=∭Ω(x2+z2)ρdV=∫02πdθ∫01dr∫0h(a2r2cos2θ+z2)abrρdz=abρ∫02πdθ∫01dr(a2r3cos2θh+3rh3)=abρ∫02πdθ(4a2cos2θh+6h3)=abρ(4a2hπ+3h3π)=abhπρ(4a2+3h2)=M(4a2+3h2)
对z轴的转动惯量:
J
z
=
∭
Ω
(
x
2
+
y
2
)
ρ
d
V
=
∫
0
2
π
d
θ
∫
0
1
d
r
∫
0
h
(
a
2
r
2
c
o
s
2
θ
+
b
2
r
2
s
i
n
2
θ
)
a
b
r
ρ
d
z
=
a
b
h
ρ
∫
0
2
π
d
θ
∫
0
1
d
r
(
a
2
r
3
c
o
s
2
θ
+
b
2
r
3
s
i
n
2
θ
)
=
a
b
h
ρ
4
∫
0
2
π
d
θ
(
a
2
c
o
s
2
θ
+
b
2
s
i
n
2
θ
)
=
a
b
h
ρ
4
(
a
2
π
+
b
2
π
)
=
M
(
a
2
+
b
2
)
4
\begin{aligned} J_z &= \iiint_{\Omega}(x^2+y^2)\rho dV \\ &= \int_0^{2\pi} d\theta\int_0^1 dr\int_0^h(a^2r^2cos^2\theta +b^2r^2sin^2\theta)abr\rho dz \\ &= abh\rho\int_0^{2\pi} d\theta\int_0^1 dr(a^2r^3cos^2\theta + b^2r^3sin^2\theta) \\ &= \frac{abh\rho}{4}\int_0^{2\pi} d\theta(a^2cos^2\theta + b^2sin^2\theta) \\ &= \frac{abh\rho}{4}(a^2\pi + b^2\pi) \\ &= \frac{M(a^2+b^2)}{4} \\ \end{aligned}
Jz=∭Ω(x2+y2)ρdV=∫02πdθ∫01dr∫0h(a2r2cos2θ+b2r2sin2θ)abrρdz=abhρ∫02πdθ∫01dr(a2r3cos2θ+b2r3sin2θ)=4abhρ∫02πdθ(a2cos2θ+b2sin2θ)=4abhρ(a2π+b2π)=4M(a2+b2)
10. 求质量为M的均匀椭球体
x
2
a
2
+
y
2
b
2
+
z
2
c
2
≤
1
(
a
>
0
,
b
>
0
,
c
>
0
)
\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1(a>0,b>0,c>0)
a2x2+b2y2+c2z2≤1(a>0,b>0,c>0)对各坐标轴的转动惯量.
解:
做一个广义球坐标系
{
x
=
a
r
s
i
n
ϕ
c
o
s
θ
y
=
b
r
s
i
n
ϕ
s
i
n
θ
z
=
c
r
c
o
s
ϕ
\begin{cases} x = arsin\phi cos\theta \\ y = brsin\phi sin\theta \\ z = crcos\phi\\ \end{cases}
⎩⎪⎨⎪⎧x=arsinϕcosθy=brsinϕsinθz=crcosϕ
对x轴的转动惯量:
J
x
=
∭
Ω
(
y
2
+
z
2
)
ρ
d
V
=
∫
0
2
π
∫
0
π
∫
0
1
(
b
2
r
2
s
i
n
2
ϕ
s
i
n
2
θ
+
c
2
r
2
c
o
s
2
ϕ
)
r
2
s
i
n
ϕ
a
b
c
ρ
d
r
d
ϕ
d
θ
=
a
b
c
ρ
5
∫
0
2
π
∫
0
π
(
b
2
s
i
n
2
ϕ
s
i
n
2
θ
+
c
2
c
o
s
2
ϕ
)
s
i
n
ϕ
d
ϕ
d
θ
=
2
a
b
c
ρ
15
∫
0
2
π
(
2
b
2
s
i
n
2
θ
+
c
2
)
d
θ
=
4
a
b
c
ρ
π
15
(
b
2
+
c
2
)
=
M
5
(
b
2
+
c
2
)
\begin{aligned} J_x &= \iiint_{\Omega}(y^2+z^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^1(b^2r^2sin^2\phi sin^2\theta + c^2r^2cos^2\phi)r^2sin\phi abc\rho drd\phi d\theta \\ &= \frac{abc\rho}{5} \int_0^{2\pi}\int_0^{\pi} (b^2sin^2\phi sin^2\theta + c^2cos^2\phi)sin\phi d\phi d\theta \\ &= \frac{2abc\rho}{15} \int_0^{2\pi}(2b^2sin^2\theta + c^2)d\theta \\ &= \frac{4abc\rho \pi}{15} (b^2+c^2) \\ &= \frac{M}{5} (b^2+c^2) \\ \end{aligned}
Jx=∭Ω(y2+z2)ρdV=∫02π∫0π∫01(b2r2sin2ϕsin2θ+c2r2cos2ϕ)r2sinϕabcρdrdϕdθ=5abcρ∫02π∫0π(b2sin2ϕsin2θ+c2cos2ϕ)sinϕdϕdθ=152abcρ∫02π(2b2sin2θ+c2)dθ=154abcρπ(b2+c2)=5M(b2+c2)
对y轴的转动惯量:
J
y
=
∭
Ω
(
x
2
+
z
2
)
ρ
d
V
=
∫
0
2
π
∫
0
π
∫
0
1
(
a
2
r
2
s
i
n
2
ϕ
c
o
s
2
θ
+
c
2
r
2
c
o
s
2
ϕ
)
r
2
s
i
n
ϕ
a
b
c
ρ
d
r
d
ϕ
d
θ
=
a
b
c
ρ
5
∫
0
2
π
∫
0
π
(
a
2
s
i
n
2
ϕ
c
o
s
2
θ
+
c
2
c
o
s
2
ϕ
)
s
i
n
ϕ
d
ϕ
d
θ
=
2
a
b
c
ρ
15
∫
0
2
π
(
2
a
2
c
o
s
2
θ
+
c
2
)
d
θ
=
4
a
b
c
ρ
π
15
(
a
2
+
c
2
)
=
M
5
(
a
2
+
c
2
)
\begin{aligned} J_y &= \iiint_{\Omega}(x^2+z^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^1(a^2r^2sin^2\phi cos^2\theta + c^2r^2cos^2\phi)r^2sin\phi abc\rho drd\phi d\theta \\ &= \frac{abc\rho}{5} \int_0^{2\pi}\int_0^{\pi} (a^2sin^2\phi cos^2\theta + c^2cos^2\phi)sin\phi d\phi d\theta \\ &= \frac{2abc\rho}{15} \int_0^{2\pi}(2a^2cos^2\theta + c^2)d\theta \\ &= \frac{4abc\rho \pi}{15} (a^2+c^2) \\ &= \frac{M}{5} (a^2+c^2) \\ \end{aligned}
Jy=∭Ω(x2+z2)ρdV=∫02π∫0π∫01(a2r2sin2ϕcos2θ+c2r2cos2ϕ)r2sinϕabcρdrdϕdθ=5abcρ∫02π∫0π(a2sin2ϕcos2θ+c2cos2ϕ)sinϕdϕdθ=152abcρ∫02π(2a2cos2θ+c2)dθ=154abcρπ(a2+c2)=5M(a2+c2)
对z轴的转动惯量:
J
z
=
∭
Ω
(
x
2
+
y
2
)
ρ
d
V
=
∫
0
2
π
∫
0
π
∫
0
1
(
a
2
r
2
s
i
n
2
ϕ
c
o
s
2
θ
+
b
2
r
2
s
i
n
2
ϕ
s
i
n
2
θ
)
r
2
s
i
n
ϕ
a
b
c
ρ
d
r
d
ϕ
d
θ
=
a
b
c
ρ
5
∫
0
2
π
∫
0
π
(
a
2
s
i
n
2
ϕ
c
o
s
2
θ
+
b
2
s
i
n
2
ϕ
s
i
n
2
θ
)
s
i
n
ϕ
d
ϕ
d
θ
=
4
a
b
c
ρ
15
∫
0
2
π
(
a
2
c
o
s
2
θ
+
b
2
s
i
n
2
θ
)
d
θ
=
4
a
b
c
ρ
π
15
(
a
2
+
b
2
)
=
M
5
(
a
2
+
b
2
)
\begin{aligned} J_z &= \iiint_{\Omega}(x^2+y^2)\rho dV \\ &= \int_0^{2\pi}\int_0^{\pi}\int_0^1(a^2r^2sin^2\phi cos^2\theta +b^2r^2sin^2\phi sin^2\theta)r^2sin\phi abc\rho drd\phi d\theta \\ &= \frac{abc\rho}{5} \int_0^{2\pi}\int_0^{\pi} (a^2sin^2\phi cos^2\theta + b^2sin^2\phi sin^2\theta)sin\phi d\phi d\theta \\ &= \frac{4abc\rho}{15} \int_0^{2\pi}(a^2cos^2\theta + b^2sin^2\theta)d\theta \\ &= \frac{4abc\rho \pi}{15} (a^2+b^2) \\ &= \frac{M}{5} (a^2+b^2) \\ \end{aligned}
Jz=∭Ω(x2+y2)ρdV=∫02π∫0π∫01(a2r2sin2ϕcos2θ+b2r2sin2ϕsin2θ)r2sinϕabcρdrdϕdθ=5abcρ∫02π∫0π(a2sin2ϕcos2θ+b2sin2ϕsin2θ)sinϕdϕdθ=154abcρ∫02π(a2cos2θ+b2sin2θ)dθ=154abcρπ(a2+b2)=5M(a2+b2)
11. 求密度为
ρ
\rho
ρ的均匀圆柱体:
x
2
+
y
2
≤
a
2
(
0
≤
z
≤
b
)
x^2+y^2\leq a^2(0\leq z\leq b)
x2+y2≤a2(0≤z≤b),对位于
(
0
,
0
,
h
)
(0,0,h)
(0,0,h)处的单位质点的引力(h>b).
解:
F
x
=
k
∭
Ω
x
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
\begin{aligned} F_x &= k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned}
Fx=k∭Ω(x2+y2+(z−h)2)3xρdV
F
y
=
k
∭
Ω
y
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
\begin{aligned} F_y &= k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned}
Fy=k∭Ω(x2+y2+(z−h)2)3yρdV
因为该圆柱体关于yOz面对称,所以
k
∭
Ω
x
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
=
0
k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0
k∭Ω(x2+y2+(z−h)2)3xρdV=0,
F
x
=
0
F_x=0
Fx=0
因为该圆柱体关于xOz面对称,所以
k
∭
Ω
y
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
=
0
k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0
k∭Ω(x2+y2+(z−h)2)3yρdV=0,
F
y
=
0
F_y=0
Fy=0
F
z
=
k
∭
Ω
(
z
−
h
)
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
=
k
ρ
∫
0
2
π
d
θ
∫
0
a
d
r
∫
0
b
(
z
−
h
)
(
r
2
+
(
z
−
h
)
2
)
3
r
d
z
=
2
k
ρ
π
∫
0
a
{
(
r
2
+
h
2
)
−
1
2
−
[
r
2
+
(
b
−
h
)
2
]
−
1
2
}
r
d
r
=
2
k
ρ
π
{
(
a
2
+
h
2
)
1
2
−
[
a
2
+
(
b
−
h
)
2
]
1
2
−
[
h
−
(
h
−
b
)
]
}
=
2
k
ρ
π
[
a
2
+
h
2
−
a
2
+
(
b
−
h
)
2
−
b
]
\begin{aligned} F_z &= k\iiint_{\Omega}\frac{(z-h)}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ &= k\rho \int_0^{2\pi} d\theta\int_0^a dr\int_0^b\frac{(z-h)}{(\sqrt{r^2+(z-h)^2})^3} r dz \\ &= 2k\rho \pi \int_0^a\{(r^2+h^2)^{-\frac{1}{2}} - [r^2+(b-h)^2]^{-\frac{1}{2}}\}r dr \\ &= 2k\rho \pi \{(a^2+h^2)^{\frac{1}{2}} - [a^2+(b-h)^2]^{\frac{1}{2}} - [h - (h-b)]\} \\ &= 2k\rho \pi [\sqrt{a^2+h^2} - \sqrt{a^2+(b-h)^2} - b] \\ \end{aligned}
Fz=k∭Ω(x2+y2+(z−h)2)3(z−h)ρdV=kρ∫02πdθ∫0adr∫0b(r2+(z−h)2)3(z−h)rdz=2kρπ∫0a{(r2+h2)−21−[r2+(b−h)2]−21}rdr=2kρπ{(a2+h2)21−[a2+(b−h)2]21−[h−(h−b)]}=2kρπ[a2+h2−a2+(b−h)2−b]
12. 求高为h,顶角为
2
α
2\alpha
2α的均匀圆锥体对于位于其顶点的单位质点的引力.
解:
F
x
=
k
∭
Ω
x
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
\begin{aligned} F_x &= k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned}
Fx=k∭Ω(x2+y2+(z−h)2)3xρdV
F
y
=
k
∭
Ω
y
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
\begin{aligned} F_y &= k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ \end{aligned}
Fy=k∭Ω(x2+y2+(z−h)2)3yρdV
因为该圆锥体关于yOz面对称,所以
k
∭
Ω
x
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
=
0
k\iiint_{\Omega}\frac{x}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0
k∭Ω(x2+y2+(z−h)2)3xρdV=0,
F
x
=
0
F_x=0
Fx=0
因为该圆锥体关于xOz面对称,所以
k
∭
Ω
y
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
=
0
k\iiint_{\Omega}\frac{y}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV = 0
k∭Ω(x2+y2+(z−h)2)3yρdV=0,
F
y
=
0
F_y=0
Fy=0
F
z
=
k
∭
Ω
(
z
−
h
)
(
x
2
+
y
2
+
(
z
−
h
)
2
)
3
ρ
d
V
=
k
ρ
∫
0
h
d
z
∫
0
2
π
d
θ
∫
(
h
−
z
)
t
a
n
α
0
(
z
−
h
)
(
r
2
+
(
z
−
h
)
2
)
3
r
d
r
=
k
ρ
∫
0
h
d
z
∫
0
2
π
d
θ
(
h
−
z
)
[
(
z
−
h
)
2
]
−
1
2
−
(
h
−
z
)
[
(
h
−
z
)
2
(
1
+
t
a
n
2
α
)
]
−
1
2
=
2
k
h
ρ
π
(
c
o
s
α
−
1
)
\begin{aligned} F_z &= k\iiint_{\Omega}\frac{(z-h)}{(\sqrt{x^2+y^2+(z-h)^2})^3}\rho dV \\ &= k\rho \int_0^hdz\int_0^{2\pi} d\theta\int_{(h-z)tan\alpha}^0\frac{(z-h)}{(\sqrt{r^2+(z-h)^2})^3} r dr \\ &= k\rho \int_0^hdz\int_0^{2\pi} d\theta(h-z)[(z-h)^2]^{-\frac{1}{2}}-(h-z)[(h-z)^2(1+tan^2\alpha)]^{-\frac{1}{2}} \\ &= 2kh\rho \pi(cos\alpha - 1)\\ \end{aligned}
Fz=k∭Ω(x2+y2+(z−h)2)3(z−h)ρdV=kρ∫0hdz∫02πdθ∫(h−z)tanα0(r2+(z−h)2)3(z−h)rdr=kρ∫0hdz∫02πdθ(h−z)[(z−h)2]−21−(h−z)[(h−z)2(1+tan2α)]−21=2khρπ(cosα−1)
13. 证明等式:
I
l
=
I
l
~
+
M
d
2
I_l = I_{\tilde{l}} + Md^2
Il=Il~+Md2,其中
I
l
I_l
Il为物体对
l
l
l轴的转动惯量,
I
l
~
I_{\tilde{l}}
Il~为物体对通过其质心且与
l
l
l轴平行的
l
~
\tilde{l}
l~轴的转动惯量,d为两轴间的距离,M是物体的质量.(提示:将
l
l
l轴取成z轴,假定此时物体的质心坐标为
(
x
0
,
y
0
,
z
0
)
(x_0,y_0,z_0)
(x0,y0,z0),则应有
x
0
2
+
y
0
2
=
d
2
x_0^2+y_0^2=d^2
x02+y02=d2.)
证明:
将
I
l
~
I_{\tilde{l}}
Il~轴取成z轴,假定此时物体的质心坐标为
(
0
,
0
,
0
)
(0,0,0)
(0,0,0).
I
l
=
∭
Ω
(
x
2
+
(
y
+
d
)
2
)
ρ
(
x
,
y
,
z
)
d
V
=
∭
Ω
(
x
2
+
y
2
+
2
y
d
+
d
2
)
ρ
(
x
,
y
,
z
)
d
V
=
∭
Ω
(
x
2
+
y
2
)
ρ
(
x
,
y
,
z
)
d
V
+
∭
Ω
2
y
d
ρ
(
x
,
y
,
z
)
d
V
+
∭
Ω
d
2
d
V
=
I
l
~
+
2
y
0
M
d
+
M
d
2
=
I
l
~
+
M
d
2
\begin{aligned} I_l &= \iiint_{\Omega}(x^2+(y+d)^2)\rho(x,y,z) dV \\ &= \iiint_{\Omega}(x^2+y^2+2yd+d^2)\rho(x,y,z) dV \\ &= \iiint_{\Omega}(x^2+y^2)\rho(x,y,z)dV + \iiint_{\Omega}2yd\rho(x,y,z)dV + \iiint_{\Omega}d^2dV \\ &= I_{\tilde{l}} + 2y_0Md + Md^2\\ &= I_{\tilde{l}} + Md^2\\ \end{aligned}
Il=∭Ω(x2+(y+d)2)ρ(x,y,z)dV=∭Ω(x2+y2+2yd+d2)ρ(x,y,z)dV=∭Ω(x2+y2)ρ(x,y,z)dV+∭Ω2ydρ(x,y,z)dV+∭Ωd2dV=Il~+2y0Md+Md2=Il~+Md2
高数习题7.4
最新推荐文章于 2022-12-04 21:02:57 发布