高数习题10.2

  1. 讨论下列级数的敛散性:
    (1) ∑ n = 1 ∞ 2 n s i n π 4 n \sum_{n=1}^{\infty}2^nsin\frac{\pi}{4^n} n=12nsin4nπ
    (2) ∑ n = 1 ∞ 1 2 n 3 + 1 \sum_{n=1}^{\infty}\frac{1}{\sqrt{2n^3+1}} n=12n3+1 1
    (3) ∑ n = 1 ∞ 1 n n \sum_{n=1}^{\infty}\frac{1}{\sqrt[n]{n}} n=1nn 1
    (4) ∑ n = 1 ∞ 4 n n 2 + 4 n − 3 \sum_{n=1}^{\infty}\frac{4n}{n^2+4n-3} n=1n2+4n34n
    (5) ∑ n = 1 ∞ n n ( n 2 + 3 n + 1 ) n + 2 2 \sum_{n=1}^{\infty}\frac{n^n}{(n^2+3n+1)^{\frac{n+2}{2}}} n=1(n2+3n+1)2n+2nn
    (6) ∑ n = 1 ∞ n ( l n n ) l n n \sum_{n=1}^{\infty}\frac{n}{(lnn)^{lnn}} n=1(lnn)lnnn
    (7) ∑ n = 1 ∞ n t a n 1 3 n \sum_{n=1}^{\infty}ntan\frac{1}{3^n} n=1ntan3n1
    解:
    (1) 2 n s i n π 4 n < π 2 n 2^nsin\frac{\pi}{4^n}<\frac{\pi}{2^n} 2nsin4nπ<2nπ,因为 ∑ n = 1 ∞ π 2 n \sum_{n=1}^{\infty}\frac{\pi}{2^n} n=12nπ收敛,所以 ∑ n = 1 ∞ 2 n s i n π 4 n \sum_{n=1}^{\infty}2^nsin\frac{\pi}{4^n} n=12nsin4nπ收敛
    (2) 1 2 n 3 + 1 < 1 2 n 3 \frac{1}{\sqrt{2n^3+1}}<\frac{1}{\sqrt{2n^3}} 2n3+1 1<2n3 1,因为 ∑ n = 1 ∞ 1 2 n 3 \sum_{n=1}^{\infty}\frac{1}{\sqrt{2n^3}} n=12n3 1收敛,所以 ∑ n = 1 ∞ 1 2 n 3 + 1 \sum_{n=1}^{\infty}\frac{1}{\sqrt{2n^3+1}} n=12n3+1 1收敛
    (3) 当 n > 2 n>2 n>2时, 1 n n > 1 n \frac{1}{\sqrt[n]{n}}>\frac{1}{\sqrt{n}} nn 1>n 1,因为 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty}\frac{1}{\sqrt{n}} n=1n 1发散,所以 ∑ n = 1 ∞ 1 n n \sum_{n=1}^{\infty}\frac{1}{\sqrt[n]{n}} n=1nn 1发散
    (4) 4 n n 2 + 4 n − 3 / 1 n → 4 \frac{4n}{n^2+4n-3}/\frac{1}{n}\to4 n2+4n34n/n14,因为 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty}\frac{1}{n} n=1n1发散,所以 ∑ n = 1 ∞ 4 n n 2 + 4 n − 3 \sum_{n=1}^{\infty}\frac{4n}{n^2+4n-3} n=1n2+4n34n发散
    (5) n n ( n 2 + 3 n + 1 ) n + 2 2 < n n n n + 2 \frac{n^n}{(n^2+3n+1)^{\frac{n+2}{2}}}<\frac{n^n}{n^{n+2}} (n2+3n+1)2n+2nn<nn+2nn n n n n + 2 / 1 n 2 → 1 \frac{n^n}{n^{n+2}}/\frac{1}{n^2}\to1 nn+2nn/n211,因为 ∑ n = 1 ∞ 1 n 2 \sum_{n=1}^{\infty}\frac{1}{n^2} n=1n21收敛,所以 ∑ n = 1 ∞ n n n n + 2 \sum_{n=1}^{\infty}\frac{n^n}{n^{n+2}} n=1nn+2nn收敛,所以 ∑ n = 1 ∞ n n ( n 2 + 3 n + 1 ) n + 2 2 \sum_{n=1}^{\infty}\frac{n^n}{(n^2+3n+1)^{\frac{n+2}{2}}} n=1(n2+3n+1)2n+2nn收敛
    (6) ( l n n ) l n n = e l n n ⋅ l n l n n = n l n l n n (lnn)^{lnn}=e^{lnn\cdot lnlnn}=n^{lnlnn} (lnn)lnn=elnnlnlnn=nlnlnn,当n足够大的时候, n l n l n n > n 3 n^{lnlnn}>n^3 nlnlnn>n3,所以 n ( l n n ) l n n < 1 n 2 \frac{n}{(lnn)^{lnn}}<\frac{1}{n^2} (lnn)lnnn<n21,因为 ∑ n = 1 ∞ 1 n 2 \sum_{n=1}^{\infty}\frac{1}{n^2} n=1n21收敛,所以 ∑ n = 1 ∞ n ( l n n ) l n n \sum_{n=1}^{\infty}\frac{n}{(lnn)^{lnn}} n=1(lnn)lnnn收敛
    (7) u n + 1 u n = ( n + 1 ) t a n 1 3 n + 1 n t a n 1 3 n → 1 3 < 1 \frac{u_{n+1}}{u_n}=\frac{(n+1)tan\frac{1}{3^{n+1}}}{ntan\frac{1}{3^n}}\to\frac{1}{3}<1 unun+1=ntan3n1(n+1)tan3n+1131<1,所以级数 ∑ n = 1 ∞ n t a n 1 3 n \sum_{n=1}^{\infty}ntan\frac{1}{3^n} n=1ntan3n1收敛
  2. 讨论下列级数的敛散性:
    (1) ∑ n = 1 ∞ n 5 n ! \sum_{n=1}^{\infty}\frac{n^5}{n!} n=1n!n5
    (2) ∑ n = 1 ∞ n ! 3 n 2 \sum_{n=1}^{\infty}\frac{n!}{3n^2} n=13n2n!
    (3) ∑ n = 1 ∞ 3 n ⋅ n ! n n \sum_{n=1}^{\infty}\frac{3^n\cdot n!}{n^n} n=1nn3nn!
    (4) ∑ n = 1 ∞ 1 n 1 + 1 n \sum_{n=1}^{\infty}\frac{1}{n^{1+\frac{1}{n}}} n=1n1+n11
    (5) ∑ n = 1 ∞ n 2 ( 3 − 1 n ) n \sum_{n=1}^{\infty}\frac{n^2}{(3-\frac{1}{n})^n} n=1(3n1)nn2
    (6) ∑ n = 1 ∞ n ( l n n ) n \sum_{n=1}^{\infty}\frac{n}{(lnn)^n} n=1(lnn)nn
    (7) ∑ n = 1 ∞ 100 0 n n ! \sum_{n=1}^{\infty}\frac{1000^n}{n!} n=1n!1000n
    (8) ∑ n = 1 ∞ ( n ! ) 2 ( 2 n ) ! \sum_{n=1}^{\infty}\frac{(n!)^2}{(2n)!} n=1(2n)!(n!)2
    (9) ∑ n = 1 ∞ 1 3 n ( n + 1 n ) n 2 \sum_{n=1}^{\infty}\frac{1}{3^n}(\frac{n+1}{n})^{n^2} n=13n1(nn+1)n2
    (10) ∑ n = 2 ∞ 1 n ( l n n ) p ( p > 0 ) \sum_{n=2}^{\infty}\frac{1}{n(lnn)^p}(p>0) n=2n(lnn)p1(p>0)
    (11) ∑ n = 3 ∞ 1 n ( l n l n n ) q ( q > 0 ) \sum_{n=3}^{\infty}\frac{1}{n(lnlnn)^q}(q>0) n=3n(lnlnn)q1(q>0)
    (12) ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q ( p > 0 , q > 0 ) \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q}(p>0,q>0) n=3n(lnn)p(lnlnn)q1(p>0,q>0)
    解:
    (1) u n + 1 u n = ( n + 1 ) 5 n ! n 5 ( n + 1 ) ! = ( n + 1 ) 5 n 5 ( n + 1 ) → 0 < 1 \frac{u_{n+1}}{u_n}=\frac{(n+1)^5n!}{n^5(n+1)!}=\frac{(n+1)^5}{n^5(n+1)}\to0<1 unun+1=n5(n+1)!(n+1)5n!=n5(n+1)(n+1)50<1,所以级数 ∑ n = 1 ∞ n 5 n ! \sum_{n=1}^{\infty}\frac{n^5}{n!} n=1n!n5收敛
    (2) u n + 1 u n = 3 n 2 ( n + 1 ) ! 3 ( n + 1 ) 2 n ! = n 2 n + 1 → ∞ > 1 \frac{u_{n+1}}{u_n}=\frac{3n^2(n+1)!}{3(n+1)^2n!}=\frac{n^2}{n+1}\to\infty>1 unun+1=3(n+1)2n!3n2(n+1)!=n+1n2>1,所以级数 ∑ n = 1 ∞ n ! 3 n 2 \sum_{n=1}^{\infty}\frac{n!}{3n^2} n=13n2n!发散
    (3) u n + 1 u n = 3 n + 1 ( n + 1 ) ! n n 3 n n ! ( n + 1 ) n + 1 = 3 n n ( n + 1 ) n → 3 e > 1 \frac{u_{n+1}}{u_n}=\frac{3^{n+1}(n+1)!n^n}{3^nn!(n+1)^{n+1}}=\frac{3n^n}{(n+1)^ n}\to\frac{3}{e}>1 unun+1=3nn!(n+1)n+13n+1(n+1)!nn=(n+1)n3nne3>1,所以级数 ∑ n = 1 ∞ 3 n ⋅ n ! n n \sum_{n=1}^{\infty}\frac{3^n\cdot n!}{n^n} n=1nn3nn!发散
    (4) 1 n 1 + 1 n / 1 n → 1 \frac{1}{n^{1+\frac{1}{n}}}/\frac{1}{n}\to1 n1+n11/n11,因为 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty}\frac{1}{n} n=1n1发散,所以 ∑ n = 1 ∞ 1 n 1 + 1 n \sum_{n=1}^{\infty}\frac{1}{n^{1+\frac{1}{n}}} n=1n1+n11发散
    (5) 当n>4时, n 2 ( 3 − 1 n ) n < n 2 2 n < 1 n 2 \frac{n^2}{(3-\frac{1}{n})^n}<\frac{n^2}{2^n}<\frac{1}{n^2} (3n1)nn2<2nn2<n21,因为 ∑ n = 1 ∞ 1 n 2 \sum_{n=1}^{\infty}\frac{1}{n^2} n=1n21收敛,所以 ∑ n = 1 ∞ n 2 ( 3 − 1 n ) n \sum_{n=1}^{\infty}\frac{n^2}{(3-\frac{1}{n})^n} n=1(3n1)nn2收敛
    (6) u n n = n n l n n → 0 < 1 \sqrt[n]{u_n}=\frac{\sqrt[n]{n}}{lnn}\to0<1 nun =lnnnn 0<1,所以级数 ∑ n = 1 ∞ n ( l n n ) n \sum_{n=1}^{\infty}\frac{n}{(lnn)^n} n=1(lnn)nn收敛
    (7) u n + 1 u n = 100 0 n + 1 n ! 100 0 n ( n + 1 ) ! = 1000 n + 1 → 0 < 1 \frac{u_{n+1}}{u_n}=\frac{1000^{n+1}n!}{1000^n(n+1)!}=\frac{1000}{n+1}\to0<1 unun+1=1000n(n+1)!1000n+1n!=n+110000<1,所以级数 ∑ n = 1 ∞ 100 0 n n ! \sum_{n=1}^{\infty}\frac{1000^n}{n!} n=1n!1000n收敛
    (8) u n + 1 u n = [ ( n + 1 ) ! ] 2 ( 2 n ) ! ( n ! ) 2 [ 2 ( n + 1 ) ] ! = ( n + 1 ) 2 ( 2 n + 1 ) ( 2 n + 2 ) → 1 4 < 1 \frac{u_{n+1}}{u_n}=\frac{[(n+1)!]^2(2n)!}{(n!)^2[2(n+1)]!}=\frac{(n+1)^2}{(2n+1)(2n+2)}\to\frac{1}{4}<1 unun+1=(n!)2[2(n+1)]![(n+1)!]2(2n)!=(2n+1)(2n+2)(n+1)241<1,所以级数 ∑ n = 1 ∞ ( n ! ) 2 ( 2 n ) ! \sum_{n=1}^{\infty}\frac{(n!)^2}{(2n)!} n=1(2n)!(n!)2收敛
    (9) u n n = ( 1 + 1 n ) n 3 → e 3 < 1 \sqrt[n]{u_n}=\frac{(1+\frac{1}{n})^n}{3}\to\frac{e}{3}<1 nun =3(1+n1)n3e<1,所以级数 ∑ n = 1 ∞ 1 3 n ( n + 1 n ) n 2 \sum_{n=1}^{\infty}\frac{1}{3^n}(\frac{n+1}{n})^{n^2} n=13n1(nn+1)n2收敛
    (10) 当 p ≠ 1 p\neq1 p=1时, ∫ 2 A 1 x ( l n x ) p d x = ( l n x ) 1 − p 1 − p ∣ 2 A = ( l n A ) 1 − p − ( l n 2 ) 1 − p 1 − p \int_2^A\frac{1}{x(lnx)^p}dx=\frac{(lnx)^{1-p}}{1-p}|_2^A=\frac{(lnA)^{1-p}-(ln2)^{1-p}}{1-p} 2Ax(lnx)p1dx=1p(lnx)1p2A=1p(lnA)1p(ln2)1p
    0 < p < 1 0<p<1 0<p<1时, ( l n A ) 1 − p − ( l n 2 ) 1 − p 1 − p → ∞ \frac{(lnA)^{1-p}-(ln2)^{1-p}}{1-p}\to\infty 1p(lnA)1p(ln2)1p,此时级数 ∑ n = 2 ∞ 1 n ( l n n ) p \sum_{n=2}^{\infty}\frac{1}{n(lnn)^p} n=2n(lnn)p1发散
    p > 1 p>1 p>1时, ( l n A ) 1 − p − ( l n 2 ) 1 − p 1 − p → 0 \frac{(lnA)^{1-p}-(ln2)^{1-p}}{1-p}\to0 1p(lnA)1p(ln2)1p0,此时级数 ∑ n = 2 ∞ 1 n ( l n n ) p \sum_{n=2}^{\infty}\frac{1}{n(lnn)^p} n=2n(lnn)p1收敛
    p = 1 p=1 p=1时, ∫ 2 A 1 x l n x d x = l n ∣ l n x ∣ ∣ 2 A = l n ∣ l n A ∣ − l n ∣ l n 2 ∣ → ∞ \int_2^A\frac{1}{xlnx}dx=ln|lnx||_2^A=ln|lnA|-ln|ln2|\to\infty 2Axlnx1dx=lnlnx2A=lnlnAlnln2,此时级数 ∑ n = 2 ∞ 1 n ( l n n ) p \sum_{n=2}^{\infty}\frac{1}{n(lnn)^p} n=2n(lnn)p1发散
    所以当 0 < p ≤ 1 0<p\leq1 0<p1时,级数 ∑ n = 2 ∞ 1 n ( l n n ) p \sum_{n=2}^{\infty}\frac{1}{n(lnn)^p} n=2n(lnn)p1发散,当 p > 1 p>1 p>1时,级数 ∑ n = 2 ∞ 1 n ( l n n ) p \sum_{n=2}^{\infty}\frac{1}{n(lnn)^p} n=2n(lnn)p1收敛.
    (11) 1 n ( l n l n n ) q / 1 n ( l n n ) 1 2 = ( l n n ) 1 2 ( l n l n n ) q → ∞ \frac{1}{n(lnlnn)^q}/\frac{1}{n(lnn)^{\frac{1}{2}}}=\frac{(lnn)^{\frac{1}{2}}}{(lnlnn)^q}\to\infty n(lnlnn)q1/n(lnn)211=(lnlnn)q(lnn)21,因为 ∑ n = 3 ∞ 1 n ( l n n ) 1 2 \sum_{n=3}^{\infty}\frac{1}{n(lnn)^{\frac{1}{2}}} n=3n(lnn)211发散,所以 ∑ n = 3 ∞ 1 n ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnlnn)^q} n=3n(lnlnn)q1发散
    (12) 当 p = 1 p=1 p=1时:
    q ≠ 1 q\neq1 q=1时, ∫ 3 A 1 x l n x ( l n l n x ) q d x = ( l n l n x ) 1 − q 1 − q ∣ 3 A = ( l n l n A ) 1 − q − ( l n l n 3 ) 1 − q 1 − q \int_3^A\frac{1}{xlnx(lnlnx)^q}dx=\frac{(lnlnx)^{1-q}}{1-q}|_3^A=\frac{(lnlnA)^{1-q}-(lnln3)^{1-q}}{1-q} 3Axlnx(lnlnx)q1dx=1q(lnlnx)1q3A=1q(lnlnA)1q(lnln3)1q
    0 < q < 1 0<q<1 0<q<1时, ( l n l n A ) 1 − q − ( l n l n 3 ) 1 − q 1 − q → ∞ \frac{(lnlnA)^{1-q}-(lnln3)^{1-q}}{1-q}\to\infty 1q(lnlnA)1q(lnln3)1q,此时级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1发散
    q > 1 q>1 q>1时, ( l n l n A ) 1 − q − ( l n l n 3 ) 1 − q 1 − q → 0 \frac{(lnlnA)^{1-q}-(lnln3)^{1-q}}{1-q}\to0 1q(lnlnA)1q(lnln3)1q0,此时级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1收敛
    q = 1 q=1 q=1时, ∫ 3 A 1 x l n x ( l n l n x ) q d x = l n ∣ l n l n x ∣ ∣ 3 A = l n ∣ l n l n A ∣ − l n ∣ l n l n 3 ∣ → ∞ \int_3^A\frac{1}{xlnx(lnlnx)^q}dx=ln|lnlnx||_3^A=ln|lnlnA|-ln|lnln3|\to\infty 3Axlnx(lnlnx)q1dx=lnlnlnx3A=lnlnlnAlnlnln3,此时级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1发散
    p > 1 p>1 p>1时:
    n > e e n>e^e n>ee时, 1 n ( l n n ) p ( l n l n n ) q < 1 n ( l n n ) p \frac{1}{n(lnn)^p(lnlnn)^q}<\frac{1}{n(lnn)^p} n(lnn)p(lnlnn)q1<n(lnn)p1,因为级数 ∑ n = 3 ∞ 1 n ( l n n ) p \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p} n=3n(lnn)p1收敛,所以级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1也收敛
    0 < p < 1 0<p<1 0<p<1时:
    级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1与积分 ∫ e 3 ∞ d x x p ( l n x ) q \int_{e^3}^\infty\frac{dx}{x^p(lnx)^q} e3xp(lnx)qdx的敛散性相同
    δ \delta δ满足 p < δ < 1 p<\delta<1 p<δ<1 1 x p ( l n x ) q / 1 x δ → ∞ \frac{1}{x^p(lnx)^q}/\frac{1}{x^\delta}\to\infty xp(lnx)q1/xδ1,积分 ∫ e 3 ∞ 1 x δ \int_{e^3}^\infty\frac{1}{x^\delta} e3xδ1发散,所以积分 ∫ e 3 ∞ d x x p ( l n x ) q \int_{e^3}^\infty\frac{dx}{x^p(lnx)^q} e3xp(lnx)qdx发散,因此级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1也发散
    综上,当 0 < p < 1 0<p<1 0<p<1 p = 1 p=1 p=1 0 < q ≤ 1 0<q\leq1 0<q1时,级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1发散,当 p > 1 p>1 p>1 p = 1 p=1 p=1 q > 1 q>1 q>1时级数 ∑ n = 3 ∞ 1 n ( l n n ) p ( l n l n n ) q \sum_{n=3}^{\infty}\frac{1}{n(lnn)^p(lnlnn)^q} n=3n(lnn)p(lnlnn)q1收敛
  3. 证明:若正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛,则级数 ∑ n = 1 ∞ u n 2 \sum_{n=1}^{\infty}u_n^2 n=1un2也收敛.反之不一定成立,试举例说明.
    证明:
    因为级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛,设 u n ≤ M u_n\leq M unM
    那么 u n 2 ≤ M u n u_n^2\leq Mu_n un2Mun,所以级数 ∑ n = 1 ∞ u n 2 \sum_{n=1}^{\infty}u_n^2 n=1un2也收敛
    u n = 1 n u_n=\frac{1}{n} un=n1时,级数 ∑ n = 1 ∞ u n 2 \sum_{n=1}^{\infty}u_n^2 n=1un2收敛,而级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散
  4. 证明:若级数 ∑ n = 1 ∞ a n 2 \sum_{n=1}^{\infty}a_n^2 n=1an2与级数 ∑ n = 1 ∞ b n 2 \sum_{n=1}^{\infty}b_n^2 n=1bn2都收敛,则级数 ∑ n = 1 ∞ ∣ a n b n ∣ , ∑ n = 1 ∞ ( a n + b n ) 2 , ∑ n = 1 ∞ ∣ a n ∣ n \sum_{n=1}^{\infty}|a_nb_n|,\sum_{n=1}^{\infty}(a_n+b_n)^2,\sum_{n=1}^{\infty}\frac{|a_n|}{n} n=1anbn,n=1(an+bn)2,n=1nan也收敛.
    证明:
    因为级数 ∑ n = 1 ∞ a n 2 \sum_{n=1}^{\infty}a_n^2 n=1an2与级数 ∑ n = 1 ∞ b n 2 \sum_{n=1}^{\infty}b_n^2 n=1bn2都收敛,所以级数 ∑ n = 1 ∞ ( a n 2 + b n 2 ) \sum_{n=1}^{\infty}(a_n^2+b_n^2) n=1(an2+bn2)也收敛
    因为 ∣ a n b n ∣ ≤ 1 2 ( a n 2 + b n 2 ) |a_nb_n|\leq\frac{1}{2}(a_n^2+b_n^2) anbn21(an2+bn2),所以级数 ∑ n = 1 ∞ ∣ a n b n ∣ \sum_{n=1}^{\infty}|a_nb_n| n=1anbn收敛
    b n = 1 n b_n=\frac{1}{n} bn=n1,得级数 ∑ n = 1 ∞ ∣ a n ∣ n \sum_{n=1}^{\infty}\frac{|a_n|}{n} n=1nan收敛
    因为 ( a n + b n ) 2 ≤ 2 ( a n 2 + b n 2 ) (a_n+b_n)^2\leq2(a_n^2+b_n^2) (an+bn)22(an2+bn2),所以级数 ∑ n = 1 ∞ ( a n + b n ) 2 \sum_{n=1}^{\infty}(a_n+b_n)^2 n=1(an+bn)2收敛
  5. 若正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn都发散,问下列级数是否发散?
    (1) ∑ n = 1 ∞ ( u n + v n ) \sum_{n=1}^{\infty}(u_n+v_n) n=1(un+vn);(2) ∑ n = 1 ∞ ( u n − v n ) \sum_{n=1}^{\infty}(u_n-v_n) n=1(unvn);(3) ∑ n = 1 ∞ u n v n \sum_{n=1}^{\infty}u_nv_n n=1unvn
    (1)发散,因为 u n + v n > u n u_n+v_n>u_n un+vn>un (2)不一定 (3)不一定
  6. lim ⁡ n → ∞ n u n = l \lim_{n\to\infty}nu_n=l limnnun=l,其中 0 < l < + ∞ 0<l<+\infty 0<l<+.证明级数 ∑ n = 1 ∞ u n 2 \sum_{n=1}^{\infty}u_n^2 n=1un2收敛,而 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散.
    证明:
    u n / 1 n → l u_n/\frac{1}{n}\to l un/n1l,因为 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty}\frac{1}{n} n=1n1发散,所以 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散
    u n 2 / 1 n 2 → l 2 u_n^2/\frac{1}{n^2}\to l^2 un2/n21l2,因为 ∑ n = 1 ∞ 1 n 2 \sum_{n=1}^{\infty}\frac{1}{n^2} n=1n21收敛,所以 ∑ n = 1 ∞ u n 2 \sum_{n=1}^{\infty}u_n^2 n=1un2收敛
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值