高数习题7.1

  1. 用二重积分表示上椭半球 x 2 a 2 + y 2 b 2 + z 2 c 2 ≤ 1 , z ≥ 0 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq1,z\geq0 a2x2+b2y2+c2z21,z0的体积,其中 a , b , c a,b,c a,b,c为正的常数.
    解: ∬ D c 1 − x 2 a 2 − y 2 b 2 d σ , D : x 2 a 2 + y 2 b 2 ≤ 1 \iint_Dc\sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}d\sigma,D:\frac{x^2}{a^2}+\frac{y^2}{b^2}\leq1 Dc1a2x2b2y2 dσ,D:a2x2+b2y21
  2. 设平面区域 D = { ( x , y ) ∣ − 1 ≤ x ≤ 1 , 0 ≤ y ≤ 1 } D=\{(x,y)|-1\leq x\leq1,0\leq y\leq1\} D={(x,y)1x1,0y1},试由定义证明: ∬ D x d σ = 0. \iint_Dxd\sigma=0. Dxdσ=0.
    证明:
    D 1 = { ( x , y ) ∣ − 1 ≤ x ≤ 0 , 0 ≤ y ≤ 1 } , D 2 = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 } D_1=\{(x,y)|-1\leq x\leq0,0\leq y\leq1\},D_2=\{(x,y)|0\leq x\leq1,0\leq y\leq1\} D1={(x,y)1x0,0y1},D2={(x,y)0x1,0y1}
    则: ∬ D x d σ = ∬ D 1 x d σ + ∬ D 2 x d σ \iint_Dxd\sigma=\iint_{D_1}xd\sigma+\iint_{D_2}xd\sigma Dxdσ=D1xdσ+D2xdσ
    因为 D 1 D_1 D1 D 2 D_2 D2面积相同,关于y轴对称,所以 ∬ D 1 x d σ = ∬ D 2 − x d σ \iint_{D_1}xd\sigma=\iint_{D_2}-xd\sigma D1xdσ=D2xdσ ∬ D x d σ = ∬ D 1 x d σ + ∬ D 2 x d σ = 0 \iint_Dxd\sigma=\iint_{D_1}xd\sigma+\iint_{D_2}xd\sigma=0 Dxdσ=D1xdσ+D2xdσ=0
  3. 设函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上连续, g ( x , y ) g(x,y) g(x,y)在D上非负,且 g ( x , y ) g(x,y) g(x,y) f ( x , y ) g ( x , y ) f(x,y)g(x,y) f(x,y)g(x,y)在D上可积.证明:在D上存在一点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),使 ∬ D f ( x , y ) g ( x , y ) d σ = f ( x 0 , y 0 ) ∬ D g ( x , y ) d σ . \iint_Df(x,y)g(x,y)d\sigma=f(x_0,y_0)\iint_Dg(x,y)d\sigma. Df(x,y)g(x,y)dσ=f(x0,y0)Dg(x,y)dσ.
    证明:
    因为函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上连续,所以函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上存在最小值 m m m和最大值 M M M
    从而, m ∬ D g ( x , y ) d σ ≤ ∬ D f ( x , y ) g ( x , y ) d σ ≤ M ∬ D g ( x , y ) d σ m\iint_Dg(x,y)d\sigma\leq\iint_Df(x,y)g(x,y)d\sigma\leq M\iint_Dg(x,y)d\sigma mDg(x,y)dσDf(x,y)g(x,y)dσMDg(x,y)dσ m ≤ ∬ D f ( x , y ) g ( x , y ) d σ ∬ D g ( x , y ) d σ ≤ M m\leq\frac{\iint_Df(x,y)g(x,y)d\sigma}{\iint_Dg(x,y)d\sigma}\leq M mDg(x,y)dσDf(x,y)g(x,y)dσM
    根据二元连续函数的介值定理,函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域D存在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)使得 f ( x 0 , y 0 ) = ∬ D f ( x , y ) g ( x , y ) d σ ∬ D g ( x , y ) d σ f(x_0,y_0)=\frac{\iint_Df(x,y)g(x,y)d\sigma}{\iint_Dg(x,y)d\sigma} f(x0,y0)=Dg(x,y)dσDf(x,y)g(x,y)dσ,即 ∬ D f ( x , y ) g ( x , y ) d σ = f ( x 0 , y 0 ) ∬ D g ( x , y ) d σ \iint_Df(x,y)g(x,y)d\sigma=f(x_0,y_0)\iint_Dg(x,y)d\sigma Df(x,y)g(x,y)dσ=f(x0,y0)Dg(x,y)dσ
  4. 设函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上连续、非负,且 ∬ D f ( x , y ) d x d y = 0 \iint_Df(x,y)dxdy=0 Df(x,y)dxdy=0.证明: f ( x , y ) ≡ 0 f(x,y)\equiv0 f(x,y)0,当 ( x , y ) ∈ D (x,y)\in D (x,y)D时.
    证明:
    f ( x , y ) f(x,y) f(x,y) D 0 D_0 D0上大于0,在 D 1 D_1 D1上等于0, D = D 1 ∪ D 2 D=D_1\cup D_2 D=D1D2
    ∬ D f ( x , y ) d x d y = ∬ D 1 f ( x , y ) d x d y + ∬ D 2 f ( x , y ) d x d y = ∬ D 1 f ( x , y ) d x d y > 0 \iint_Df(x,y)dxdy=\iint_{D_1}f(x,y)dxdy+\iint_{D_2}f(x,y)dxdy=\iint_{D_1}f(x,y)dxdy>0 Df(x,y)dxdy=D1f(x,y)dxdy+D2f(x,y)dxdy=D1f(x,y)dxdy>0
    ∬ D f ( x , y ) d x d y = 0 \iint_Df(x,y)dxdy=0 Df(x,y)dxdy=0矛盾,所以 f ( x , y ) f(x,y) f(x,y) D 0 D_0 D0上等于0,所以当 ( x , y ) ∈ D (x,y)\in D (x,y)D时, f ( x , y ) ≡ 0 f(x,y)\equiv0 f(x,y)0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值