汇总|三维重建开源项目

本文列举了多个高质量的开源三维重建软件和相关资源,包括Meshroom、OpenMVG、Awesome_3DReconstruction_list等。这些项目覆盖了从单个深度视图进行3D对象重建到复杂的3D场景重建,提供了不同平台的支持和丰富的功能,如摄影测量、点云分析、表面重建等。此外,还提到了3D视觉工坊的知识星球,为3D视觉学习者提供资源和交流平台。
摘要由CSDN通过智能技术生成

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

1、Meshroom ⭐4,474

Meshroom是一款基于AliceVision摄影测量计算机视觉框架的免费开源三维重建软件。

https://github.com/alicevision/meshroom

2、Openmvg ⭐2,829

Openmvg库根据三维计算机视觉和结构的运动。OpenMVG提供了一个端到端的3D重建,它由图像框架组成,包含库、二进制文件和管道。

  • 这些库提供了简单的功能,如:图像处理,功能描述和匹配,功能跟踪,相机模型,多视图几何,旋转估计…

  • 该二进制文件解决了管道可能需要的单元任务:场景初始化、特征检测与匹配和运动重建的结构,并将重建的场景导出到其他多视点立体视觉框架中,以计算密集的点云或纹理网格。

  • 这些管道通过链接各种二进制文件来计算图像匹配关系

OpenMVG是用c++开发的,可以在Android、iOS、Linux、macOS和Windows上运行。

https://github.com/openMVG/openMVG

3、Awesome_3dreconstruction_list ⭐2,261

与图像3D重建相关的论文和资源精选清单

https://github.com/openMVG/awesome_3DReconstruction_list

4、Awesome Point Cloud Analysis ⭐1,801

关于点云分析(处理)的论文和数据集列表

https://github.com/Yochengliu/awesome-point-cloud-analysis

5、Opensfm ⭐1,635

OpenSfM是一个用Python编写的运动库的结构。该库作为一个处理管道,用于从多个图像重建相机姿态和3D场景。它由运动结构的基本模块(特征检测/匹配,最小解算)组成,重点是构建一个健壮的、可伸缩的重建管道。它还集成了外部传感器(如GPS、加速计)测量,以实现地理定位和鲁棒性。提供了一个JavaScript查看器来预览模型和调试管道。

https://github.com/mapillary/OpenSfM

6、Alicevision ⭐1,318

AliceVision是摄影测量计算机视觉框架,可提供3D重建和相机跟踪算法。AliceVision旨在通过可测试,分析和重用的最新计算机视觉算法提供强大的软件基础。该项目是学术界和工业界合作的结果,旨在为尖端算法提供鲁棒性和生产使用所需的质量。

https://github.com/alicevision/AliceVision

7、Openmvs ⭐1,193

OpenMVS是面向计算机视觉的库,尤其是针对多视图立体重建社区的。尽管有针对运动结构管道(例如OpenMVG)的成熟而完整的开源项目,这些管道可以从输入的图像集中恢复相机的姿势和稀疏的3D点云,但没有一个解决摄影测量链的最后一部分-流。OpenMVS旨在通过提供一套完整的算法来恢复要重建场景的整个表面来填补这一空白。输入是一组摄影机姿势加上稀疏的点云,输出是带纹理的网格。该项目涉及的主要主题是:

  • 密集的点云重构,以获得尽可能完整,准确的点云

  • 网格重建,用于估计最能解释输入点云的网格表面

  • 网格细化可恢复所有精细细节

  • 网格纹理,用于计算清晰准确的纹理以对网格着色

https://github.com/cdcseacave/openMVS

8、Bundler_sfm ⭐1,158

https://github.com/snavely/bundler_sfm

9、Bundlefusion ⭐752

使用在线表面重新整合进行实时全局一致的三维重建

https://github.com/niessner/BundleFusion

10、Face_swap ⭐636

面部交换:https://github.com/YuvalNirkin/face_swap

11、Scannet ⭐678

ScanNet是一个RGB-D视频数据集,包含超过1500次扫描中的250万次视图,使用3D摄像机姿态、表面重建和实例级语义分段进行注释。

https://github.com/ScanNet/ScanNet

12、Softras⭐540

SoftRas是一个真正的可微分渲染框架,把渲染作为一个可微分的聚合过程,融合所有网格三角形的概率贡献相对于渲染像素。

https://github.com/ShichenLiu/SoftRas

13、Pifu ⭐474

https://github.com/shunsukesaito/PIFu

14、Matterport ⭐460

用于RGB-D机器学习任务的非常棒的数据集。

https://github.com/niessner/Matterport

15、Kimera⭐456

Kimera是一个用于实时度量-语义同步定位和映射的c++库,它使用摄像机图像和惯性数据来构建环境的语义注释3D网格。Kimera是模块化的,支持ros,在CPU上运行。

https://github.com/MIT-SPARK/Kimera

16、Mvs Texturing ⭐421

项目可以根据图像对3D重建进行纹理处理。该项目专注于使用运动和多视图立体技术的结构生成的3D重建。

https://github.com/nmoehrle/mvs-texturing

17、Livescan3d ⭐402

LiveScan3D是一个实时三维重建系统,使用多个Kinect v2深度传感器同时进行三维重建。产生的3D重建形式是有色点云的形式,所有Kinect的点都放置在同一坐标系中。该系统的可能使用场景包括:

  • 同时从多个视点捕获对象的3D结构,

  • 捕获场景的“全景” 3D结构(通过使用多个传感器来扩展一个传感器的视场),

  • 将重建的点云流式传输到远程位置,

  • 通过让多个传感器捕获同一场景来提高单个传感器捕获的点云的密度。

https://github.com/MarekKowalski/LiveScan3D

18、Voxelhashing ⭐364

大规模、实时三维重建:

https://github.com/niessner/VoxelHashing

19、Layoutnet ⭐298

从单个RGB图像重建三维房间布局

https://github.com/zouchuhang/LayoutNet

20、Tsdf Fusion Python ⭐295

这是一个轻量级的python脚本,可将多个颜色和深度图像融合到TSDF体积中,然后可以将其用于创建高质量的3D表面网格和点云。在Ubuntu 16.04上测试效果如下图:

https://github.com/andyzeng/tsdf-fusion-python

21、Intrinsic3d ⭐231

通过外观和几何优化以及空间变化的照明实现高质量3D重构

https://github.com/NVlabs/intrinsic3d

22、Kimera Semantics ⭐228

从2D数据进行实时3D语义重构

https://github.com/MIT-SPARK/Kimera-Semantics

23、Awesome Holistic 3d ⭐209

3D重建的论文和资源清单:

https://github.com/holistic-3d/awesome-holistic-3d

24、3dreconstruction ⭐151

使用Python3进行SFM的3D重建

https://github.com/alyssaq/3Dreconstruction

25、Structured3d ⭐121

用于结构化3D建模的大型照片级数据集

https://github.com/bertjiazheng/Structured3D

26、Synthesize3dviadepthorsil ⭐117

通过对多视图深度图或轮廓建模来生成和重建3D形状

https://github.com/Amir-Arsalan/Synthesize3DviaDepthOrSil

27、Msn Point Cloud Completion ⭐111

https://github.com/Colin97/MSN-Point-Cloud-Completion

28、Cnncomplete ⭐107

用于训练体积深层神经网络以完成部分扫描的3D形状的代码

https://github.com/angeladai/cnncomplete

29、Reconstructiondataset ⭐95

用于进行三维重建的一组图像

https://github.com/rperrot/ReconstructionDataSet

30、3d Recgan Extended ⭐81

从单个深度视图进行密集的3D对象重建

https://github.com/Yang7879/3D-RecGAN-extended

本文仅做学术分享,如有侵权,请联系删文。

推荐阅读:

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近1000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值