保姆教程 | YOLOv5在建筑工地中安全帽佩戴检测的应用

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

编辑丨AI深度学习视线

  教程来自:https://github.com/PeterH0323/Smart_Construction

一、YOLO v5训练自己数据集教程 

  • 1.1 创建自己的数据集配置文件 

  • 1.2 创建每个图片对应的标签文件 

  • 1.3 文件放置规范 

  • 1.4 聚类得出先验框(可选) 

  • 1.5 选择一个你需要的模型 

  • 1.6 开始训练 

  • 1.7 看训练之后的结果 

二、侦测 

三、检测危险区域内是否有人 

  • 3.1 危险区域标注方式 

  • 3.2 执行侦测 

  • 3.3 效果:在危险区域里面的人体会被 红色框 选出来 

四、生成 ONNX 

五、增加数据集的分类

该项目是使用 YOLOv5 v2.x 来训练在智能工地安全领域中头盔目标检测的应用,先来一波演示!

指标

yolov5s 为基础训练,epoch = 50

分类PRmAP0.5
总体0.8840.8990.888
人体0.8460.8930.877
0.8890.8830.871
安全帽0.9170.9210.917

对应的权重文件:https://pan.baidu.com/share/init?surl=ELPhtW-Q4G8UqEr4YrV_5A,提取码: b981


yolov5m 为基础训练,epoch = 100

分类PRmAP0.5
总体0.8860.9150.901
人体0.8440.9060.887
0.90.9110.9
安全帽0.9130.9290.916

对应的权重文件:https://pan.baidu.com/share/init?surl=0hlKrgpxVsw4d_vHnPHwEA,提取码: psst


yolov5l 为基础训练,epoch = 100

分类PRmAP0.5
总体0.8920.9190.906
人体0.8560.9140.897
0.8930.9130.901
安全帽0.9270.9290.919

对应的权重文件:https://pan.baidu.com/share/init?surl=iMZkRNXY1fowpQCcapFDqw,提取码: a66e


1

  YOLOv5训练自己数据集教程

使用的数据集:Safety-Helmet-Wearing-Dataset ,感谢这位大神的开源数据集!

https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset

本文结合 YOLOv5官方教程 来写

环境准备

首先确保自己的环境:

Python >= 3.7
Pytorch == 1.5.x

训练自己的数据

提示:

关于增加数据集分类的方法,请看【5. 增加数据集的分类】


   1.1 创建自己的数据集配置文件

因为我这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件 custom_data.yaml

# 训练集和验证集的 labels 和 image 文件的位置
train: ./score/images/train
val: ./score/images/val


# number of classes
nc: 3


# class names
names: ['person', 'head', 'helmet']


   1.2 创建每个图片对应的标签文件

使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt 文件,其规范如下:

  • 每一行都是一个目标

  • 类别序号是零索引开始的(从0开始)

  • 每一行的坐标 class x_center y_center width height 格式

  • 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将x_centerwidth除以图像宽度,将y_centerheight除以图像高度。代码如下:

import numpy as np
def convert(size, box):
    """
    将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
    :param size: 图片的尺寸:[w,h]
    :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
    :return: 转换后的 [x,y,w,h]
    """
    x1 = int(box[0])
    y1 = int(box[1])
    x2 = int(box[2])
    y2 = int(box[3])
    dw = np.float32(1. / int(size[0]))
    dh = np.float32(1. / int(size[1]))
    w = x2 - x1
    h = y2 - y1
    x = x1 + (w / 2)
    y = y1 + (h / 2)
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return [x, y, w, h]

生成的 .txt 文件放置的名字是图片的名字,放置在 label 文件夹中,例如:

./score/images/train/00001.jpg  # image
./score/labels/train/00001.txt  # label

生成的 .txt 例子

1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374


  1.3 文件放置规范

文件树如下


   1.4 聚类得出先验框(Yolov5 内部已做适配,可选)

使用代码 ./data/gen_anchors/clauculate_anchors.py ,修改数据集的路径

FILE_ROOT = r"xxx" # 根路径
ANNOTATION_ROOT = r"xxx"  # 数据集标签文件夹路径
ANNOTATION_PATH = FILE_ROOT + ANNOTATION_ROOT

跑完会生成一个文件 anchors.txt,里面有得出的建议先验框:

Best Accuracy = 79.72%
Best Anchors = [[14.74, 27.64], [23.48, 46.04], [28.88, 130.0], [39.33, 148.07], [52.62, 186.18], [62.33, 279.11], [85.19, 237.87], [88.0, 360.89], [145.33, 514.67]]


   1.5 选择一个您需要的模型

在文件夹 ./models 下选择一个你需要的模型然后复制一份出来,将文件开头的 nc = 修改为数据集的分类数,下面是借鉴 ./models/yolov5s.yaml来修改的

# parameters
nc: 3  # number of classes     <============ 修改这里为数据集的分类数
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple


# anchors
anchors: # <============ 根据 ./data/gen_anchors/anchors.txt 中的 Best Anchors 修改,需要取整(可选)
  - [14,27, 23,46, 28,130] 
  - [39,148, 52,186, 62.,279] 
  - [85,237, 88,360, 145,514]


# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, BottleneckCSP, [1024, False]],  # 9
  ]


# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13


   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17


   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20


   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23


   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


   1.6 开始训练

这里选择了 yolov5s 模型进行训练,权重也是基于 yolov5s.pt 来训练

python train.py --img 640 --batch 16 --epochs 10 --data ./data/custom_data.yaml --cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt

其中,yolov5s.pt 需要自行下载放在本工程的根目录即可,下载地址 官方权重

   1.7 看训练之后的结果

训练之后,权重会保存在 ./runs 文件夹里面的每个 exp 文件里面的 weights/best.py ,里面还可以看到训练的效果

 2

推断

侦测图片会保存在 ./inferenct/output/ 文件夹下

运行命令:

python detect.py --source   0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

例如使用我的 s 权重检测图片,可以运行以下命令,侦测图片会保存在 ./inferenct/output/ 文件夹下

python detect.py --source 图片路径 --weights ./weights/helmet_head_person_s.pt

3

 检测危险区域内是否有人

   3.1 危险区域标注方式

我这里使用的是 精灵标注助手 标注,生成了对应图片的 json 文件

   3.2 执行侦测

侦测图片会保存在 ./inferenct/output/ 文件夹下

运行命令:

python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt


   3.3 效果:在危险区域里面的人体会被 红色框 选出来

4

 生成 ONNX

    4.1 安装 onnx

pip install onnx

    4.2 执行生成

python ./models/export.py --weights ./weights/helmet_head_person_s.pt --img 640 --batch 1

onnxtorchscript 文件会生成在 ./weights 文件夹中

5

 增加数据集的分类

关于增加数据集分类的方法:

SHWD 数据集里面没有 person 的类别,先将现有的自己的数据集执行脚本生成yolov5需要的标签文件.txt,之后再用yolov5x.pt 加上 yolov5x.yaml ,使用指令检测出人体

python detect.py --save-txt --source ./自己数据集的文件目录 --weights ./weights/yolov5x.pt
yolov5 会推理出所有的分类,并在 inference/output 中生成对应图片的 .txt 标签文件;

修改 ./data/gen_data/merge_data.py 中的自己数据集标签所在的路径,执行这个python脚本,会进行 person 类型的合并

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

  • 3
    点赞
  • 4
    评论
  • 43
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p>深度学习落地过程,为了适应嵌入端AI算力不足的问题,通常需要对深度学习模型进行压缩,而剪枝技术是最常用的深度学习模型压缩技术之一。<span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;">本课程结合讲师本身的工程实践,给出</span><span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;">基于FPGM算法的</span><span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;">yolov5s模型剪枝方法,并coco数据集上进行剪枝训练,保证mPA微小下降的前提下,大大提高的yolov5s的inference速度。</span></p> <p><span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;">剪枝前yolov5scoco val数据集上评估指标如下:                         </span></p> <p><span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;"><img src="https://img-bss.csdnimg.cn/202107021240244571.jpg" alt="" width="647" height="232" />  </span></p> <p><span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;">FPGM剪枝后coco val数据集上评估指标如下:</span></p> <p><span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;"><img src="https://img-bss.csdnimg.cn/202107021241281863.jpg" alt="" width="644" height="228" /></span></p> <p><span style="background-color: #ffffff; color: #222226; font-family: 'PingFang SC', 'Hiragino Sans GB', Arial, 'Microsoft YaHei', Verdana, Roboto, Noto, 'Helvetica Neue', sans-serif; font-size: 14px;">I</span></p> <p> </p>
<p class="MsoNormal"><span style="font-family: '微软雅黑',sans-serif;">YOLO</span><span style="font-family: '微软雅黑',sans-serif;">系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而性能高,更加灵活和易用,当前非常流行。</span><span style="font-family: 微软雅黑, sans-serif;"> </span></p> <p class="MsoNormal"><span style="font-family: '微软雅黑',sans-serif;">本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span style="font-family: 微软雅黑, sans-serif;"> </span></p> <p class="MsoNormal"><span style="font-family: '微软雅黑',sans-serif;">本课程的YOLOv5使用ultralytics/yolov5<span style="color: #e03e2d;"><strong>Windows</strong></span>系统上做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。</span><span style="font-family: 微软雅黑, sans-serif;"> </span></p> <p class="MsoNormal"><span style="font-family: 微软雅黑, sans-serif;">希望学习Ubuntu上演示的同学,请前往 </span><span style="font-family: 微软雅黑, sans-serif;">《</span><span style="font-family: 微软雅黑, sans-serif;">YOLOv5(PyTorch)</span><span style="font-family: 微软雅黑, sans-serif;">实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793</span><span style="font-family: 宋体;"><span style="font-size: 14px;"> </span></span></p> <p style="margin-left: 0cm;"> </p> <p style="margin-left: 0cm;">本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:</p> <p>《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》</p> <p>Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color: #7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong></p> <p>Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color: #7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong></p> <p class="MsoNormal" style="background: white; word-break: break-all;" align="left"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5(PyTorch)</span>目标检测:原理与源码解析》课程链接:<strong><span lang="EN-US"><a href="https://edu.csdn.net/course/detail/31428"><span style="color: windowtext; font-weight: normal; text-decoration-line: none;">https://edu.csdn.net/course/detail/31428</span></a></span></strong></span></p> <p class="MsoNormal" style="background: white; word-break: break-all;" align="left"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5</span>目标检测实战:<span lang="EN-US">Flask Web</span>部署》课程链接:<strong><span lang="EN-US"><a href="https://edu.csdn.net/course/detail/31087"><span style="color: windowtext; font-weight: normal; text-decoration-line: none;">https://edu.csdn.net/course/detail/31087</span></a></span></strong></span></p> <p class="MsoNormal" style="background: white; word-break: break-all;" align="left"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5(PyTorch)</span>目标检测实战:<span lang="EN-US">TensorRT</span>加速部署》课程链接<strong>:<span lang="EN-US"><a href="https://edu.csdn.net/course/detail/32303"><span style="color: windowtext; font-weight: normal; text-decoration-line: none;">https://edu.csdn.net/course/detail/32303</span></a></span></strong></span></p> <p class="MsoNormal" style="background: white; word-break: break-all;" align="left"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5</span>目标检测实战:<span lang="EN-US">Jetson Nano</span>部署》课程链接:<span lang="EN-US"><a href="https://edu.csdn.net/course/detail/32451" data-cke-saved-href="https://edu.csdn.net/course/detail/32451"><span style="color: windowtext; text-decoration-line: none;">https://edu.csdn.net/course/detail/32451</span></a></span></span></p> <p class="MsoNormal" style="background: white; word-break: break-all;" align="left"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5+DeepSORT</span>多目标跟踪与计数精讲》课程链接:<strong><span lang="EN-US"><a href="https://edu.csdn.net/course/detail/32669"><span style="color: windowtext; font-weight: normal; text-decoration-line: none;">https://edu.csdn.net/course/detail/32669</span></a></span></strong></span></p> <p class="MsoNormal" style="background: white; word-break: break-all;" align="left"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5</span>实战口罩佩戴检测》课程链接:<strong><span lang="EN-US"><a href="https://edu.csdn.net/course/detail/32744"><span style="color: windowtext; font-weight: normal; text-decoration-line: none;">https://edu.csdn.net/course/detail/32744</span></a></span></strong></span></p> <p class="MsoNormal"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5</span>实战国交通标志识别》课程链接:<span lang="EN-US"><a href="https://edu.csdn.net/course/detail/32744"><span style="color: windowtext; text-decoration-line: none;">https://edu.csdn.net/course/detail/35209</span></a></span></span></p> <p class="MsoNormal"><span style="font-family: '微软雅黑',sans-serif;">《<span lang="EN-US">YOLOv5</span>实战垃圾分类目标检测》课程链接:<span lang="EN-US"><a href="https://edu.csdn.net/course/detail/35284"><span style="color: windowtext; text-decoration-line: none;">https://edu.csdn.net/course/detail/35284</span></a></span></span></p> <p class="MsoNormal"><span style="font-family: '微软雅黑',sans-serif;"><span lang="EN-US"><span style="color: windowtext; text-decoration-line: none;"><img src="https://img-bss.csdnimg.cn/202106220205279501.jpg" alt="课程内容" /></span></span></span></p> <p class="MsoNormal"><span lang="EN-US" style="font-family: '微软雅黑',sans-serif;"> </span></p> <p> </p> <p class="MsoNormal"><span lang="EN-US"> <img src="https://img-bss.csdnimg.cn/202106220204372263.jpg" alt="图片检测效果" /></span></p> <p> </p> <p> </p> <p> </p> <p> </p>
©️2021 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值