如何在arXiv上发表一篇文章

本文介绍了arXiv预印本平台,详细阐述了如何注册、撰写及提交论文,包括账号注册、文章编写、文件上传、元数据填写和预览提交等步骤,帮助科研新人快速掌握在arXiv发表文章的流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

前言:

对于科研新人来说,有时候有一些好的想法不能第一时间通过正式的论文发表出来,便可以借助arXiv这个平台发表。这篇文章将简单介绍arXiv,并详细介绍如何在arXiv提交一篇论文。

关于arXiv的常见问题:

(这部分问题是作者参考arXiv官网,和相关资料,总结而成。可能会有错误,仅供参考。如有错误,欢迎指出)

1. arXiv怎么发音?

arXiv读音与”archive”([‘ɑːkaɪv],档案馆)相同,其中的X表示希腊字母的 (chi)。

2. arXiv是什么?

是一个收集物理学、数学、计算机科学、生物学与数理经济学的论文预印本的网站。1991年创建,现由康奈尔大学维护。

3. 什么是“预印本”?

通常指未公开发表的,出于同行交流的目的而在互联网上发布的学术文献。可以是完全没有投稿的论文,也可以是投稿了但并未采用(正在评审等环节、或已经拒稿)的论文,或者是已经被录用但并未公开的论文。

4

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值