基于多传感器数据融合的视觉SLAM

背景介绍

自动驾驶和服务机器人行业增速明显,自2021年以来,多家公司开始逐步落地自己的L2~L4级别的辅助/自动驾驶产品(无人出租车或者配送机器人),如百度、滴滴、美团、华为、特斯拉、Waymo等。其中,基于视觉传感器和惯性传感器的同时定位与建图技术(SLAM)是该领域的核心技术之一,各大公司均有相关在招岗位。由于视觉-惯性SLAM对从业者的理论和代码要求都很高,导致行业人才供小于求,许多公司更是不惜重金招聘一个合格的SLAM算法工程师,并且薪资待遇极其丰厚。以下是某照片网站对SLAM相关职位的要求和待遇:

视觉SLAM由于成本低,单目/双目结合多传感器的方案越来越受青睐,而视觉惯性里程计更是多传感融合方案的佼佼者;其中,最著名的方案当属VINS-Fusion(VINS-Mono的扩展版)。VINS-Fusion是香港科技大学于2019年开源的视觉-惯性SLAM系统,KITTI Visual Odometry 榜单中排名最靠前的开源双目 VO 方案,主要支持:单目+IMU、纯双目、双目+IMU、双目+IMU+GPS,是一个可以用于室外场景中无人车辆/机器人自主定位的优秀方案,以下是官方测试效果展示:

几种方案效果对比

KITTI测试场景

如何学习


视觉-惯性SLAM所涉及的理论深度较深、覆盖面广,并对工程实践能力要求也较高,新手自学时相对比较困难。当下虽然有很多丰富的理论资料和优秀的相关开源项目,但是许多童鞋面对海量的理论资料、复杂的开源项目时可能无从下手,前期学习曲线过于陡峭,不得不放弃继续深入。为此,3D视觉工坊推出了《视觉-惯性SLAM的入门与实践》课程,结合VINS-Fusion源码,系统地对视觉-惯性SLAM的基础理论知识进行梳理。整套课程由一线算法工程师教授,从基础理论到代码剖析,保姆级教学,助力学员一步步从小白成长为大牛。

课程大纲

讲师介绍

毕业于西北工业大学,国内某机器人创业公司技术总监,具有多年SLAM和机器人领域产品、实战经验, 曾获国内外多个机器人大赛一等奖和冠军。

面向对象

1. 具备线性代数、概率论和优化理论等基础数学知识;

2. 掌握C++编程语言,熟悉ROS机器人操作系统的使用;

3. SLAM相关研究方向的在校生,需要进阶的一线算法和工程人员,以及非常想要转入SLAM领域的从业者;

学后收获

1. 扎实掌握视觉-惯性SLAM的基础理论;

2. 掌握著名开源方案VINS-Fusion,并具备独立阅读其他开源SLAM代码的能力;

3. 具备独立开发视觉-惯性SLAM系统的编程与实践能力;

4. 对标企业级要求,能够胜任相关岗位;

课程优势

1. 国内首个面向VINS-Fusion框架的课程;

2. 授课讲师在学术界和工业界具有丰富的理论研究和工程落地经验;

3.算法理论和实践相结合,保姆级教学,讲师数年经验倾情奉献,数据、代码开源帮助学员更好地理解每一个细节,能够真正将所学应用到实际项目中;

4. 教授结束后布置练习项目,答疑群内,讲师面对面和学员一起交流遇到的难题;

5.优质的学习圈子,可以和国内外高校学子一起讨论学习,你踩过的坑他们大概率踩过;

开课时间

2021年8月29日正式开课,历时三个月,每两周更新一次,具体时间以学习群内公告为主。

课程咨询

点击购买与咨询

▲微信扫码可查看、购买、学习课程

▲长按加客服微信,咨询更多


群号:910070197
▲课程咨询QQ群,了解更多

点击“阅读原文”也可直接购买课程

### 多传感器数据融合SLAM中的应用与实现方法 多传感器数据融合SLAM(Simultaneous Localization and Mapping)中的应用旨在通过结合多种传感器的优势来提升系统的鲁棒性和精度。以下是对其实现方法的具体分析: #### 1. 融合策略的选择 多传感器数据融合通常分为三个层次:**数据级融合**、**特征级融合**和**决策级融合**。 - **数据级融合**是指直接对原始传感器数据进行处理,这种方法能够保留更多的细节信息,但也增加了计算负担[^4]。 - **特征级融合**是在提取各传感器的特征后再进行融合,适用于减少冗余信息的情况[^3]。 - **决策级融合**则是在各个独立模块完成任务后,再综合其结果得出最终结论,适合复杂的高层决策场景[^5]。 #### 2. 常见的多传感器组合及其优势 不同的传感器具有各自的特点,在实际应用中常将它们结合起来以弥补单一传感器的不足。 - **激光雷达 + IMU**: 激光雷达提供了精确的距离测量能力,而IMU能够在短时间内提供高频的姿态更新信息。两者的结合可以通过互补滤波器或卡尔曼滤波器实现高精度的位置估计[^2]。 ```python import numpy as np def kalman_filter(x, P, u, z, F, H, R, Q): """ Kalman filter implementation. Parameters: x (numpy.ndarray): Current state estimate. P (numpy.ndarray): Estimate covariance matrix. ... Returns: Updated state vector `x` and updated covariance matrix `P`. """ # Prediction step x = np.dot(F, x) + u P = np.dot(np.dot(F, P), F.T) + Q # Update step y = z - np.dot(H, x) S = R + np.dot(np.dot(H, P), H.T) K = np.dot(P, np.dot(H.T, np.linalg.inv(S))) x = x + np.dot(K, y) P = P - np.dot(np.dot(K, H), P) return x, P ``` - **视觉 + IMU**: 视觉传感器能捕捉丰富的环境结构信息,但容易受到光照变化的影响;IMU可以在短时间尺度上补充视觉丢失的信息。这种组合广泛应用于无人机和移动机器人领域。 #### 3. 同步标定的重要性 为了使多个传感器协同工作,必须解决传感器之间的时空一致性问题。这涉及两个方面:**时间同步**和**空间标定**。 - 时间同步确保来自不同传感器的数据在同一时刻采样; - 空间标定则是指确定传感器之间相对位置关系的过程,常用的方法有优化求解最小二乘误差或者利用特定校准工具辅助完成[^1]。 #### 4. 鲁棒性增强措施 面对复杂环境中可能出现的各种干扰因素,设计合理的异常检测机制至关重要。例如,采用语义标注技术识别地标离群点,并赋予权重调整影响程度。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值