作者:Zhengxue Wang | 来源:3DCV
在公众号「3DCV」后台,回复「原论文」可获取论文pdf
添加微信:dddvision,备注:立体视觉,拉你入群。文末附行业细分群
由南京理工PCA Lab开发的深度图超分辨率方法SGNet(SGNet: Structure Guided Network via Gradient-Frequency Awareness for Depth Map Super-Resolution),针对仅通过空间域的图像引导方法难以恢复出清晰的深度图结构问题,提出了一种简单而有效的框架SGNet,使用梯度校准模块(GCM)和频率感知模块(FAM),分别在梯度域和频域传播RGB图像的高频分量来增强LR深度图的结构。SGNet在所有常用的数据集上均取得了SOTA结果!
1 前言
由于复杂的成像环境,获取到的深度图通常会存在边缘结构模糊问题。在过去的几年里,大量的图像引导方法用于深度图超分辨率(DSR),但这些方法大多数集中在空间域,无法恢复清晰的边缘结构。通过实验发现,梯度域和频域在表示高频结构信息方面有着天然的优势ÿ