南京理工最新突破!基于梯度和频率域的深度超分辨率新方法

南京理工PCA Lab的SGNet深度超分辨率方法利用梯度校准模块(GCM)和频率感知模块(FAM),在梯度和频域增强LR深度图的结构,解决了深度图边缘结构模糊的问题,取得SOTA结果。该方法通过RGB图像的梯度和频谱信息,在多领域恢复和传播高频结构,提升了深度图的恢复质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Zhengxue Wang | 来源:3DCV 

在公众号「3DCV」后台,回复「原论文」可获取论文pdf

添加微信:dddvision,备注:立体视觉,拉你入群。文末附行业细分群

由南京理工PCA Lab开发的深度图超分辨率方法SGNet(SGNet: Structure Guided Network via Gradient-Frequency Awareness for Depth Map Super-Resolution),针对仅通过空间域的图像引导方法难以恢复出清晰的深度图结构问题,提出了一种简单而有效的框架SGNet,使用梯度校准模块(GCM)和频率感知模块(FAM),分别在梯度域和频域传播RGB图像的高频分量来增强LR深度图的结构。SGNet在所有常用的数据集上均取得了SOTA结果!

1 前言

由于复杂的成像环境,获取到的深度图通常会存在边缘结构模糊问题。在过去的几年里,大量的图像引导方法用于深度图超分辨率(DSR),但这些方法大多数集中在空间域,无法恢复清晰的边缘结构。通过实验发现,梯度域和频域在表示高频结构信息方面有着天然的优势ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值