机器人领域最好的会议是什么?

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

编辑:3D视觉工坊

扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)最新顶会论文计算机视觉书籍优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

cd9cbf7d1910c844313cdd08cf82cbd2.jpeg

回答一

作者|叶小飞

https://www.zhihu.com/question/266477032/answer/2957081423

2023年了,现在越来越多的人把Vision和Robotics结合到一起做,所以我就在这里专门针对Vision for Robotics的角度来把各个机器人顶会按照难度、论文质量排序,并且说一下每个会议审稿人的大致喜好。

PS: 这里排出RSS,因为RSS里面搞视觉的比较少,但不考虑vision的话,RSS综合来看绝对是No. 1。

难度排序

我自己作为一作中过CVPR/ECCV/CoRL/ICRA/IROS/WACV, 所以就根据自己的投稿/审稿经验将这几个机器人会议的难度与视觉会议放在一起对比,这样更偏Vision一些的朋友也有个参照。

CVPR > ECCV~=CoRL >> ICRA ~= WACV > IROS

CVPR的难度略高于ECCV估计大家都没有什么意见,但是这个没进CCF列表,每年也就几百投稿的CoRL居然能和ECCV难度平齐?

没错,CoRL单看接受率确实比ECCV高了八九个百分点,但ECCV里的投稿非常鱼龙混杂,我自己审过的稿子有一半质量差的令人发指,我一度怀疑他们是来骗review的。而CoRL作为小众会议,来投的基本都是专注于这个领域的学者,整体投稿质量其实比较高,所以高上几个百分点并不代表什么。另外从Rebuttal的经历来说,CoRL采用openreview,  审稿人可以无限让你补充材料回答问题,我的rebuttal内容甚至比原文还要长,这一点也加大了CoRL的难度。最后, CoRL其实最主要还是RL的战场,所以对Vision投稿要求很严格,CoRL要求投稿人的文章紧扣Robotics, learning, vision, novelty, and practical 这五个关键词,能把这五个凑齐真的很不容易……

到了ICRA,难度降了不少,个人感官和WACV差不多,就是你把文章做扎实,找好问题,文章好好写,其实大概率会中的,并不需要太多novelty在里面。但和WACV不一样的是,搭积木的论文在ICRA中很不吃香,这点后面会细说。

再看IROS,做 SLAM一类的投IROS其实挺不容易的,但Vision的门槛低很多。说句实话,做Vision往robotics套最后投IROS很大概率都是走投无路了。。。我有一篇文章被三大会加NIPS连拒几次后在IROS找到归宿。。

质量排序

CoRL > ICRA > IROS

CoRL里面的大多数通关的Vision文章质量都不错,比如2022的“Real-World Robot Learning with Masked Visual Pre-training", "CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse Transformers" (手动狗头),2021的DETR3D等等,大多都值得一读。另外,大名鼎鼎的CARLA仿真软件也是在CoRL首发。

ICRA里的Vision文章有少许比较惊艳,譬如2023 Bolei老师的TrafficGen, Action-aware Driving Caption Transformer, 2022年的最佳论文等等。但它大部分还是趋于中规中矩,剩下的一些不堪入目。

到了IROS感觉Vision的文章非常鱼龙混杂,绝大部分没有什么营养价值。不过有些真的做到了上车/上实体实验的,还是值得一看。

审稿人喜好

CoRL

real-world, real-world, real-world! 重要的事情说三遍!投CoRL的Vision文章现在一定要有真实数据做验证,只用仿真大概率会被喷死。我参与的几篇里凡是只用仿真的,哪怕框架再新,也被挂了。

另外审稿人非常看重你的novelty与pratical的结合。你的模型learning的方式要novel,同时解决的问题要实际,不能说整了一堆花里胡哨的东西最后只是在于提高一两个百分点,更重要的是能解决什么实际的问题,所以故事一定要讲好。

ICRA

我目前投ICRA的战绩是六投六中,感觉ICRA的审稿人都比较reasonable,但同时又很实际。你可以只用仿真,设计的算法可以是已有的东西拼接起来的,但是你解决的问题一定要具有独特的意义,并且你的算法是为你的问题服务的。审过不少把ICRA完全当视觉会议投的,模型搭了一堆积木,却说不出为什么这样搭,最后又没讲清楚能解决啥实际问题,这种大概率挂。所以ICRA里你设置问题的setting非常重要。

IROS

一直没有抓到IROS审稿人的偏好,有我觉得很烂的被收了的,也有写的不错悲剧后来又中了ICRA的, 可能还是我投的审的过少。。。

最后说一下,以上只是根据我个人审稿+投稿经历,结合身边朋友的经验来讲自己的亲身体验,若有不对之处,欢迎素质讨论!

回答二

作者|贾子枫

https://www.zhihu.com/question/266477032/answer/310947773

回答这个问题,是因为我在开始机器人领域的研究后,一直非常希望有人给我讲一讲机器人领域的会议和期刊,给我写作的指导,了解如何找到好文章和投文章,甚至包括Latex的用法,相关研究方向的Bibtex等等,回答中会涉及到部分期刊。虽然自己的publication算不上亮眼,但我总找借口说我攻读硕士学位,并没有发文章的硬性指标,这样的成绩还算不错啦!我回答问题有几个毛病,比较啰嗦,经常不能给出确定的答案,大概也比较枯燥,准备阅读的大家需要做好心理准备。为了给小白的同学们更大的帮助,按照成长路线来写。。

----------

感觉答案写太长了很多同学可能读不明白,其实主要是想说明好不好和大不大,难不难的关系。

会议的评价体系应该是有很多。可以看会议的影响力,比如早期我们就只有用类似于期刊的Impact Factor影响因子来评价,影响因子越高的会议,也会吸引更多更好的文章,中稿的几率也小。后来Google scholar则用H5 Index来评价会议的影响力。影响力的问题就是能反映出会议前几年文章的水平,不太能代表当下及以后。也可以看会议的采纳标准是不是很高,这个最简单的就是看Acceptance Rate,接收率越低就说明文章越难中,比如CVPR,ICCV的Oral接受率常低于5%,很多人也喜欢在自己的Publication List里面标注出这个数据。但是有些会议规模小,投稿的文章都是很好的文章,那么Acceptance Rate的参考意义就不大了,需要有行业内的专家“口碑”,这个口碑和会议的影响力以及Acceptance Rate关系不大,就是行内的认可度。所以如果一个会议规模很大,接受率低,影响力也很大,口碑超级好,那毋庸置疑是非常好的会议,比如NIPS,2017的Acceptance Rate是21%,投稿3240篇,中679篇。H5-Index在谷歌学术中的人工智能分类排名第一(忽略arXiv),这个霸主地位简直无法撼动。

----------

当年我对发文章的了解只有SCI和EI,期刊的话需要看影响因子(IF,Impact Factor),其他一律不懂。于是就会搜索“机器人最好的会议”。幸好那时候不会有世界机器人大会(WRC)这种误导。我收藏在自己收藏夹里的是两个科学网的网址。让我记住的就是机器人领域最厉害的会议就是ICRA和IROS!还有机器人领域的顶级期刊IJRR,JFR和TRO!(问题里给的Quora链接写的TOR,感觉就比较业余了。。。因为官网给的缩写就是T-RO,大概是因为引文的格式,Transactions on Robotics可以写成Transactions,Robotics On)

f7b1b0850b9672f6ee95dfe305199c32.png

于是就开始心心念念的想给ICRA和IROS投文章,被屡次据掉不提。。

我自己记了一个My Publication Chronicles,最曲折一篇会议从10年写,到13年才发表。当时以为Robio是一个很好的会议,中了还很高兴,应该是被小木虫的帖子闲话机器人领域的国际会议 - 论文投稿 - 小木虫 - 学术 科研 互动社区误导了。。后来没钱开会就取消了。当时的CLAWAR和Humanoids明显好很多,不过方向比较窄,攀爬,足式,人形,都是注重locomotion的会议。

dfa9aa22b959dc3410fa2357d16ff3aa.png

自以为连投了机器人三大顶会-_-!首次听说RSS是因为11年换工作到了新加坡科技局信息所工作,12年初就看到了这份所里给出的无条件资助开会的Tier 1会议列表。What?竟然没有ICRA和IROS?机器人相关的只有RSS?这份名单今天看也不算很过时,就附给大家参考。这里的会议大都不是靠会议的影响力来排名,而基本是专业领域的教授,评委会根据口碑选出来的。I2R的表单就是参考NUS的School Of Computing的表单。当然后来执行的时候ICRA和IROS其实也是无条件资助开会的,不然整个Robotics Program几十号人都没办法去开会了

0dd6116fe9a32a8dfbeb547e92a9989c.jpeg

后来随着我在13到15年迎来自己paper的高产期,对各个会议的认知又发生了一些变化。

没有最好,只有更好。

10年9月份把上面那篇文章投给ICRA的时候,正好和在微软亚研实习的中学同学一起住。他聊起发表的CVPR,我也说我投了机器人顶会ICRA。“ICRA啊?我知道啊,很好发呢!”“嗯。。。”

那段时间和他聊了很多,知道了ICCV,ECCV等计算机视觉的会议,也了解到那个时候做视觉的发不了视觉顶会的话,就会拿机器人顶会灌水。。。也知道了ICRA和IROS在计算机科学大领域的会议中排名只能算B类。我觉得做视觉的发表机器人会议文章,就是对我们的降维打击。

后来开始系统的看一些机器人领域大牛(Google Scholar从某个科学家的标签上点击robotics就可以看到有机器人学标签的各位大佬按照引用量的排名了)的文章,发现排名高的大牛们还会发很多AAAI,UAI,IJCAI,NIPS,AAMAS,ICML,...... 机器人毕竟还是和人工智能分不开。期刊也会发IEEE内大名鼎鼎的PAMI,这时候就觉得做机器人不能眼光只局限在小小的robotics,应该有更广阔的天地!

这个认知在我做神经认知机器人时又被刷新了。当时组里的机器人方向大家目标是RSS, ICRA, IROS, TRO,做神经计算的目标是NIPS,IJCNN,ICONIP,TNNLS,TAMD,TEC,Neural Computation,Neurocomputing之类,然后两个方向进行结合,组里的共同目标就是PLoS One(好像在生化方向已经是很水的期刊了),PLoS Computational Biology,以及PNAS。那个时候才知道了有一个期刊叫做PNAS,做工程的如果能发表到PNAS,大概将来能有机会评院士呢吧?跳出了纯工程领域的思维,发文章的等级又会有一次提升!

然后有一次听了意大利的BioRobotics大佬Paolo Dario的讲座,讲了两个小时他对Science和Nature的渴望。。。如果机器人和生物方向结合,看来发表NCS也不是不可能啊?

所以提一下比较敬仰的两个人发表的Science文章。

Gerald Edelman,从大脑转型做机器人相关工作后的Science文章。Learning in and from Brain-Based Devices(https://www.science.org/doi/10.1126/science.1148677)

Geoffrey Hinton,组里做视觉的老大哥给我说深度学习启蒙于这一篇文章。

Reducing the Dimensionality of Data with Neural Networks(https://www.science.org/doi/10.1126/science.1127647)

在这里,机器人人工智能完全上升到了科学的高度。不是调调参数摆弄摆弄模型刷一刷数据集能搞定的了。

跨领域的创新性工作是比较容易发在好的期刊和会议的上的。但是创新性的工作也很有可能做不出成果,需要权衡。

正题:ICRA,IROS,RSS和ISRR

可以说按照顶会顶刊鄙视链 科学领域 > 工程领域 = 计算机领域 > 机器人领域,在机器人领域中的这几个会议或期刊的差别并不大,不用太纠结。每个会议都有每个会议的基因和圈子,挑选合适的会议投就可以了。可谓没有好不好,只有合不合适。这个正题部分其实很多答案都写了许多,我主要补充一些资料供大家参考。

e0529d02a28ba6a4489c2db5c271e711.jpeg

Google scholar的这个Metric排名可以算作是机器人会议和期刊的影响力。

ICRA一直盘踞这个榜单第一名,毫无疑问是机器人领域影响力最大的会议,历史悠久,而且从名字中的Automation就知道是从Control这一个分支进化来的机器人会议。涵盖范围非常大,也造成鱼龙混杂。如果做机械结构的创新,执行机构设计等等偏机械的文章投ICRA也是没问题的。

IROS是IEEE和RSJ共同主办,和ICRA就像是孪生兄弟,提交文章截止和开会日期都差个半年。所以每年大家都有两次提交自己工作的机会,不用着急~ IROS就没有了Automation,多了Intelligent,感觉收录文章的风格也会偏向智能和算法一些。

ICRA和IROS大概就像是视觉领域的ICCV和CVPR。RSS就有点像NIPS了。NIPS早年也是一个比较小众的会议,圈子也很小,这两年壮大的很厉害。相比之下RSS的规模还是不大。深度学习在机器人领域中的应用早期就很多发表在RSS上。感觉会议明显偏重算法。当然按照机器人顶会的要求,除了理论还要有机器人平台上的实际结果,感觉文章内的工作量都非常大。除了这三个会议之外,还有一个曾经也是很精致的机器人领域的顶级小会ISRR。在某些排名中也被列为A类。(CSDN链接中的缩写拼错成了ISSR) 。有些大佬应该是常年参会。不知道这几年光景怎么样了。

计算机会议排名等级 - CSDN博客blog.csdn.net/cserchen/article/details/40508181

都说三十年河东三十年河西,会议也是这样,可能随着一批主要科学家的淡出而淡出,也可能因为新的方向崛起而火爆。大家很多人都提到了Acceptance Rate,ICRA和IROS的常年在40%-50%之间,可谓相当之高。但是除去大佬灌水,评审各种相互提携,留给小白的机会并没有看起来那么美妙。

下面也是我收藏的夹中的一个列表,只是数据也比较过时了。。。

Conference Acceptance Rate Statistics(www.adaptivebox.net/CILib/CICON_stat.html)

最后是题主关心的RSS的统计,毕竟名字中带着Science,承担着机器人科学的使命。某年Vijay Kumar的团队就中了5篇么6篇。看17年的数据不知道是不是成了小众的聚会,希望不要慢慢变成ISRR的样子。

至于说IROS much worse than RSS...

看看过去5年两个会议被引用最高的5篇文章。RSS的,你读过几篇?

a801f42aa105453becd397169d40eeac.jpeg北美大牛扎堆

再带领你看一下IROS的前5。可以问问 @半闲居士 怎么看待much worse这个评价。。。

f5821892f306213a34c80454c47f61e7.jpeg我想不用说什么了吧?

毕竟这三个会议我只发过IROS,写这么长为自己洗白,真累。。。

3D视觉工坊交流群

目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉大模型工业3D视觉SLAM自动驾驶三维重建无人机等方向,细分群包括:

2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等

大模型:NLP、CV、ASR、生成对抗大模型、强化学习大模型、对话大模型等

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

除了这些,还有求职硬件选型视觉产品落地最新论文3D视觉最新产品3D视觉行业新闻等交流群

添加小助理: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

3cbb8a4d981af1ae729c1625bf711331.png
▲长按扫码添加助理
3D视觉工坊知识星球

3D视觉从入门到精通知识星球、国内成立最早、6000+成员交流学习。包括:星球视频课程近20门(价值超6000)项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

b3da013acea4a3ec2f7b4bb62d26c62a.jpeg
▲长按扫码加入星球
3D视觉工坊官网:www.3dcver.com

3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、三维视觉C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪,无人机等

3b258432f8ed0c8822c9d3bed753d34d.jpeg
▲长按扫码学习3D视觉精品课程
3D视觉相关硬件
图片说明名称
ce5dfccf905496ac010e86c5c17e1f31.png硬件+源码+视频教程精迅V1(科研级))单目/双目3D结构光扫描仪
0f7d7f2ae5b2938e50c3a2efe4e2e824.png硬件+源码+视频教程深迅V13D线结构光三维扫描仪
35b87d7df1b40deca672b15eac7f9055.png硬件+源码+视频教程御风250无人机(基于PX4)
9c0a68bed061a51cd72fb7916c29367a.png配套标定源码高精度标定板(玻璃or大理石)
添加小助理:cv3d007或者QYong2014 咨询更多

—  —

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

3D视觉科技前沿进展日日相见 ~ 

outside_default.png

### 回答1: 要熟练掌握机器人手术导航系统相关知识,需要经过以下几个步骤: 1. 学习基础知识:首先需要学习相关的基础知识,包括机器人手术导航系统的构成、工作原理、操作方法等等。可以通过阅读相关的书籍、论文、网络课程等方式进行学习。 2. 实践操作:在学习基础知识的基础上,需要进行实践操作,亲自动手操作机器人手术导航系统。可以通过参加相关的培训课程、实习、实验室等方式进行实践操作。 3. 深入研究:在掌握基础知识和实践操作之后,可以进行深入研究,了解机器人手术导航系统的最新技术发展、应用场景、优缺点等等。可以通过参加相关的研讨会、阅读学术期刊、参与相关的研究项目等方式进行深入研究。 4. 不断练习:最后,要不断练习,保持对机器人手术导航系统的熟练掌握和使用,可以通过参与相关的临床手术、科研项目等方式进行练习。同时也要关注最新技术和研究成果,不断更新自己的知识水平。 ### 回答2: 要熟练掌握机器人手术导航系统相关知识,可以从以下几个方面入手: 首先,需要系统地学习相关的基础知识。可以通过参加相关的培训课程、学习资料,或者通过网络搜索和阅读专业书籍来获得理论知识。了解机器人手术导航系统的原理、组成部分、操作流程、安全注意事项等。 其次,应该进行实践操作。通过参与实践操作,如模拟手术、实际手术示教等来提高技能水平。可以找到相关的培训机构或者医疗机构,参与相关的实操操作,并跟随有经验的医生或技术人员进行指导。 同时,要持续关注最新的技术、方法和研究成果。机器人手术导航系统日新月异,不断有新的技术和方法涌现,要通过参加学术会议、阅读相关期刊和论文等方式,及时获取最新的信息。可以通过加入学术社群或医疗同行的微信、QQ群等渠道,与其他专业人士交流和讨论。 另外,要进行持续的自我学习和提升。可以积极参与相关的继续教育、学习交流活动,或自行积累经验,不断总结反思,通过不断反馈修正自身操作技巧。 总之,熟练掌握机器人手术导航系统相关知识需要深入学习理论知识、实践操作、关注最新技术和持续自我提升,只有不断学习和实践,才能不断提高技能水平,熟练掌握相关知识。 ### 回答3: 要熟练掌握机器人手术导航系统相关知识,可以按照以下步骤进行学习和实践: 1. 学习基础知识:先了解机器人手术导航系统的基本概念、原理和组成部分。查阅相关的学术书籍、论文和技术文档,掌握相关术语和专业知识。 2. 参加培训课程:参加机器人手术导航系统的培训课程或研讨会,由专业人员进行系统的讲解和实操演示,学会使用不同型号的机器人导航系统。 3. 实践操作:在机器人手术导航系统的相关实验室或临床环境中,亲自操作和实践,熟悉系统的操作流程和操作界面。通过反复的实践,提高操作的熟练度和准确性。 4. 学习案例分析:阅读和分析机器人手术导航系统的实际应用案例。了解手术导航系统在不同手术场景中的应用,研究其优势和局限性。 5. 与专家交流:参与学术研讨会、行业会议或论坛,与机器人手术导航系统的专家进行交流和讨论。通过与专家的互动,了解最新的研究进展和技术发展方向。 6. 持续学习:机器人手术导航系统是一个不断发展的领域,要保持更新的知识,需要持续学习。关注相关的学术期刊和科技网站,深入了解最新的研究成果和技术进展。 通过以上的学习和实践,可以逐渐熟练掌握机器人手术导航系统的相关知识,并在实际应用中运用。不断积累经验和提高技能,可以成为机器人手术导航系统的专业人员。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值