社招+实习 | 无问智科招端到端多模态大模型、AI数据合成、autolabel算法工程师...

招聘来源:

3D视觉从入门到精通知识星球

公司介绍:

12e0992edd0c4ad2896d3cefdf9335cd.png

a32749b0a082311664915b0a798a6137.png

e75617f090df40a9d0edffc5d7e3c2ce.png

职位信息:无问智科算法组岗位,社招+实习

职位1:autolabel算法工程师

学历要求:本科要求

经验:2年以上 

坐标:北京/德清 

职位描述:

1、4D autolabel的深度学习算法开发,包括基于点云或图像的检测、跟踪、分割等,搭建云端真值自动标注系统;

2、融合多传感器数据,在各种复杂场景和海量数据中提升算法的准确性;

3、利用大模型、自监督、半监督等技术提升自动标注算法结果的准确性和效率,降低标注成本;

4、追踪并改进前沿 SLAM 算法、视觉与激光三维重建算法,生成大规模场景的几何与纹理表达;

5、与工程团队和数据标注团队紧密协作,搭建高效的真值数据生产链路;

6、与感知、评测团队紧密协作,将重建的场景 4D 真值应用到大规模模型训练和评测中,解决各种复杂场景的实际问题。

任职要求:

1、计算机科学、模式识别、机器人、电子工程、自动化、软件工程方向本科及以上,2年以上工作经验;

2、熟悉深度学习算法,有过点云或图像算法开发经验,包括但不限于检测、跟踪、分割、深度估计、光流等。

3、理解基于滤波(KF/EKF/UKF)、平滑(RTS、TFS)和优化(非线性最小二乘)等 的状态估计算法;

4、有 Lidar 点云重建经验,视觉 3D 重建,有开源 SLAM、VIO 框架的实践、改进经验;热爱动手,有良好的编程风格,了解常用数据结构和算法;

5、有自动驾驶、机器人算法开发经验,有3D感知、SLAM算法和BEV算法经验者优先;

6、熟悉 NeRF 相关神经渲染技术,3d gaussian splatting技术者优先。

薪水:面议

职位2:ai数据合成算法工程师

学历要求:硕士要求   

经验:2年以上 

坐标:北京/德清 

职位描述:

1、参与基于gaussian splatting/Nerf的场景生成与编辑工作,优化前景背景解耦、显式隐式模型融合、材质光照解耦、大规模场景优化、多视角联合优化。2、参与AIGC(图像、视频)算法的开发与优化,研究问题如视频生成、生成质量优化、可控生成等;

3、负责开展自动驾驶领域世界模型的研发与迭代。

4、跟踪AIGC领域的前沿技术,开展具备创新性的高水平研究,保持技术在业界的领先和竞争力;

任职要求:

1、计算机科学、人工智能、机器学习或相关领域,本科及以上学历,2年以上工作经验。

2、熟悉Python/C++编程,掌握PyTorch等框架。

3、熟悉 NeRF 相关神经渲染技术,3d gaussian splatting技术

4、利用数据合成在仿真中有过实际落地项目经验者优先。

5、熟悉AIGC模型的训练,熟悉经典模型结构如Diffusion等

6、熟悉多模态数据的处理和表示方法,如图像与文本等数据模态。

薪水:面议

职位3:端到端多模态大模型工程师(infra)

学历要求:硕士要求   

经验:3年以上 

坐标:北京/德清

职位描述:

1、参与跨模态大模型在自动驾驶产业中的研发落地,如:大模型微调、端到端自动驾驶建模、策略迭代,以及开放场景下的场景理解等;

2、探索多模态大模型的前沿领域研究,包括但不限于数据建设、数据质量优化、图像/视频内容生成、RLHF、Agent等工作。

3、负责优化和提升大模型在自驾中的业务效果,包括:大模型的封装、推理加速、模型指令微调和策略迭代、Scaling Law等,持续提高算法的效率和性能;

4、负责大模型训练架构优化、推理加速、模型压缩,持续提高算法训练和推理的效率和性能。

任职要求:

1、计算机科学、人工智能、机器学习或相关领域,硕士及以上学历,3年以上工作经验。

2、具有扎实的深度学习、计算机视觉/自然语言处理基础;

3、熟悉主流大模型训练框架megatron、deepspeed等等,能进行设计、训练、评估和部署多模态大模型;

4、具备1年以上多模态大模型经验,熟悉主流大模型(如CLIP、GLIP、GPT-4V等)的原理、性能表现及其差异,能够根据实际问题改造和优化算法;

5、具备较强的沟通能力,优秀的编程能力和实战能力,能够独立分析和解决技术问题。 

薪水:面议

98450a9124c03473116857030606461d.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值