来源:JackCui
添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。
扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
最近,有个概念很火:MCP。
据说它能够调用搜索功能、控制数据库等,那么它与 AI Agent 或者 Function Call 究竟有什么区别呢?
这篇文章,给你讲明白。

MCP官网:
https://modelcontextprotocol.io/introduction
一、什么是MCP?
MCP,全称 Model Context Protocol(模型上下文协议),是Anthropic提出的一种开放协议,旨在标准化应用程序向大语言模型(LLM)提供上下文的方式。
可以将其类比为AI模型的“USB-C”接口,它让AI能够轻松访问各种外部数据源和工具,实现更强的动态信息处理能力。
换句话说,MCP为AI模型提供了一种统一的交互协议,使其能够像联网的搜索引擎一样查询最新数据、访问企业数据库,甚至是执行自动化任务。
二、为什么MCP
MCP的提出,可以追溯到AI大模型发展面临的几个核心问题:
数据时效性问题:传统大模型训练数据固定,导致其知识具有滞后性,无法实时访问最新的信息。
碎片化工具链:不同的AI工具和插件往往各自为政,缺乏统一标准,使得开发者需要针对不同模型单独适配,增加了开发成本。
上下文管理复杂:Function Call等现有方法可以调用API,但它们通常要求开发者显式定义调用逻辑,难以形成统一的AI生态。
在这些需求的推动下,Anthropic提出了MCP,旨在为AI模型提供标准化的数据访问方式,让模型能够与各种外部数据源进行交互。
所以MCP可以有效的结解决现有AI与环境交互带来的各种麻烦。

想象一下,如果你的AI助手可以轻松访问你的个人内部数据库、邮箱,日历等等,而不需要针对每个应用单独开发接口,这会极大提升AI的实用性。MCP就是这样一个通用的“适配器”,就像上面的图片一样,一个type-c转换器解决所有问题。
但是,如果我们都有像OpenAI的function call 我们为什么还需要MCP, 这看起来好像有点多余。
但核心上还是几个重要区别:


它使 AI 能够访问多种外部数据源(如数据库、API、搜索引擎),通过 MCP 服务器进行交互,构建开放的插件化 AI 生态。而 Function Call 则更专注于让 AI 调用预定义的函数接口,主要用于执行特定任务,如计算器调用或 API 交互,依赖开发者手动定义接口。
简单来说,Function Call更像是AI调用特定任务的API,而 MCP 更像是AI访问一个开放的数据生态。
因此,MCP 可能推动 AI 生态的发展,使其能够更自由地扩展和集成不同的数据源。
说了这么多,哪里能获取我们想要的MCP呢?
MCP.so 提供非常多插件供大家使用,例如时间MCP, 爬虫MCP等等大量丰富的MCP。

MCP商店:
https://mcp.so/
三、实战:使用Claude Desktop操作Notion
现在主流的几种使用MCP的方式有,cline, windsurf, 还有就是claude desktop。
这里我们使用Claude Desktop 作为教程。
准备工作
1、设置 MCP Notion 服务器
这边需要你有node.js, 没有的小伙伴可以去node.js 的官网下载安装一下。
然后,克隆仓库:
git clone https://github.com/suekou/mcp-notion-server.git
然后运行以下命令:
cd notion
npm run build
npm link
确保 notion/build/index.js
文件成功创建。
2、准备 Notion API 令牌
前往 Notion 集成页面(https://www.notion.so/my-integrations),创建一个新集成,并复制 API 令牌,保留一下等下会用。

3、配置 claude_desktop_config.json
编辑 claude_desktop_config.json
,添加 Notion 服务器路径和 刚刚的Notion API 令牌:
{
"mcpServers": {
"notion": {
"command": "node",
"args": [
"/Users/YOUR_USERNAME/Desktop/mcp-notion-server/notion/build/index.js"
],
"env": {
"NOTION_API_TOKEN": "Notion AAPI令牌"
}
}
}
}
试用MCP Notion 服务器
重启 Claude Desktop,点击工具图标(右下角小榔头),查看 "notion" 是否出现在 "From Server" 选项中。
让 Claude 撰写一篇文章后,发送以下消息:
写一篇关于CLaude的文章。

授权 Claude 访问 Notion,稍等片刻,即可在 Notion 页面看到保存的内容。


操作Notion数据库
这里我们想要创建一个电影数据库,Claude会自己获取知识然后创建在Notion里,相当方便。
创建一个关于电影的数据库

然后向 Claude 询问:
告诉我评分为 ⭐️⭐️⭐️⭐️⭐️ 的电影。
Claude 将从 Notion 数据库检索相关数据,并返回匹配的结果。

四、MCP的未来展望

反正我使用了之后,我觉得MCP对于AI软件的开发会大大提高效率。
希望MCP生态能快速的发展起来,这样未来使用MCP就像使用浏览器插件一样简单且高效。
每个人能都可以创建属于自己的AI小助手。
本文仅做学术分享,如有侵权,请联系删文。
3D视觉交流群,成立啦!
目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:
工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。
SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。
自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。
三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等
无人机:四旋翼建模、无人机飞控等
2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等
最前沿:具身智能、大模型、Mamba、扩散模型、图像/视频生成等
除了这些,还有求职、硬件选型、视觉产品落地、产品、行业新闻等交流群
添加小助理: cv3d001,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

3D视觉工坊知识星球
「3D视觉从入门到精通」知识星球(点开有惊喜),已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接、3D视觉学习路线总结、最新顶会论文&代码、3D视觉行业最新模组、3D视觉优质源码汇总、书籍推荐、编程基础&学习工具、实战项目&作业、求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。
卡尔曼滤波、大模型、扩散模型、具身智能、3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

— 完 —
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
3D视觉科技前沿进展日日相见 ~