点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达
来源:智驾派
添加小助理:cv3d001,备注:方向+单位+昵称,拉你入群。文末附行业细分群。
扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20+门独家视频课程、100+场顶会直播讲解、最新顶会论文分享、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

——从架构创新到场景落地的全面技术革命
一、技术架构:端到端模型的颠覆性突破
小米SU7的端到端智能驾驶技术(HAD,Hyper Auto Drive)标志着传统模块化架构向全链路AI决策的范式转变。其核心在于**“感知-决策-执行”全流程的深度整合**,通过自研大模型直接处理传感器输入并输出控制指令,显著降低了传统多模块架构中的信息损耗与延迟137。
1. 感知层:多模态融合与视觉语言大模型
传感器配置:
激光雷达:192线高精度激光雷达,探测距离200米,点云密度等效300线,夜间目标检出率99.9%;
摄像头:800万像素三目摄像头,覆盖水平视场角120°,支持动态曝光补偿与逆光增强;
毫米波雷达+超声波雷达:4D成像雷达提供高度信息,超声波雷达覆盖近距离盲区78。
多模态融合:
视觉语言大模型:通过Transformer架构整合图像、激光雷达点云与语义信息,实现“所见即所解”。例如,系统可识别施工围栏上的文字警告,并提前规划绕行路径36。
实时环境建模:每秒更新30次的动态鸟瞰图(BEV),支持复杂路口无保护左转、连续变道等场景4。
2. 决策层:端到端大模型的核心优势
架构设计:
端到端感知决策一体化:采用深度神经网络(DNN)直接映射传感器数据至方向盘转角、油门/刹车控制量,跳过分模块的中间表示(如目标检测、路径规划),延迟降低至200ms以内17。
自适应策略生成:模型通过10亿公里级仿真数据训练,学习人类驾驶员的决策模式。例如,在拥堵路段主动贴近前车以减少加塞,或在高速弯道中动态调整转向阻尼45。
场景泛化能力:
无图化导航:摆脱高精地图依赖,通过实时感知与SLAM(同步定位与建图)技术实现全国道路覆盖,尤其适应乡村道路与临时施工区域46。
长尾场景处理:针对“鬼探头”、逆向行驶车辆等极端场景,模型通过强化学习(RL)在仿真环境中迭代优化,事故规避率提升至98%38。
3. 执行层:智能底盘与线控系统的协同
XPower 3.0线控底盘:
全主动悬架:48V液压系统支持毫秒级阻尼调节,兼顾舒适性与操控性(如过减速带时软硬切换);
超级四电机系统:单电机峰值功率387kW,扭矩矢量分配精度0.1°,实现赛道级操控47。
冗余设计:
双控制器架构:主控芯片(双Orin-X)与备用芯片(自研天神之芯)并行运行,单点故障下仍可维持L2级功能8。
二、数据闭环:从量产车到仿真系统的协同进化
小米SU7的技术迭代高度依赖**“量产车数据-仿真训练-OTA升级”闭环**,这一模式使其在9个月内实现13.5万辆交付,并积累了中国道路场景的完整数据库26。
1. 数据采集与处理
影子模式:未激活智驾时持续采集corner case(如雨雪天轮胎打滑、异常交通标志),日均回传数据1PB,覆盖95%中国路况58。
半自动标注:通过预训练模型自动标注90%数据,人工仅需校验关键帧,效率提升5倍3。
2. 仿真系统与加速测试
场景库规模:超5.8万个专业场景,包括高原冰雪、台风暴雨等极端条件,单日可模拟10万公里驾驶4。
数字孪生技术:高精地图与实景建模结合,复刻北京CBD、重庆8D立交等复杂区域,验证算法鲁棒性5。
3. OTA升级策略
高频迭代:2025年2月推送HyperOS 1.5.5版本,新增18项功能(如误加速抑制、夜间行人避让),优化18项体验(如泊车路径平滑度)78。
用户反馈闭环:通过App收集体验问题,48小时内生成修复方案,部分紧急补丁可“热更新”无需重启5。
三、场景落地:从城市NOA到全域自动驾驶
小米SU7的端到端技术已实现多场景覆盖,其商业化路径体现为“功能分层-体验升级-生态扩展”的三阶段战略。
1. 城市NOA:全国无图化推送
核心功能:
车位到车位:用户下车后车辆自动寻找泊位,支持立体车库与机械车位,泊入成功率99%15。
拥堵模式:在车距小于0.5米时自动切换跟车策略,减少急刹与加塞6。
用户体验:春节实测中,系统在返程高峰避开87%拥堵路段,平均通行效率提升35%5。
2. 高速领航:安全与效率的平衡
变道逻辑:基于博弈论模型,在确保安全的前提下主动超车,变道成功率92%(传统系统约80%)47。
续航优化:结合实时路况与电池SOC(电量状态),动态调整车速与能量回收强度,续航误差率<3%6。
3. 泊车场景:全自动与高精度
代客泊车:支持跨楼层记忆泊车(最长1.5公里),定位精度±10cm8。
窄车位通过:通过“蟹行模式”(后轮转向)与超声波雷达融合,最小可通过宽度2.1米车位7。
四、用户反馈与技术挑战
1. 用户评价:高满意度与待改进点
正向反馈:
安全性:AEB在100km/h时速下成功避免“鬼探头”事故,获用户“救命功能”评价58。
便利性:自动泊车在商场高峰期的实用性强,女性用户满意度达95%5。
改进需求:
极端天气性能:暴雨环境下激光雷达点云衰减,导致变道决策延迟增加37。
交互体验:语音指令在高速风噪场景下识别率下降,需优化麦克风阵列6。
2. 技术挑战与应对策略
算力瓶颈:端到端模型需1000TOPS以上算力,当前双Orin-X(508TOPS)制约复杂场景处理。小米计划2026年量产7nm自研芯片(算力2000TOPS)48。
法规与责任:L3级脱手驾驶的交通事故责任划分尚未明确,小米联合保险公司推出“智驾责任险”,覆盖系统故障导致的事故78。
五、未来展望:从技术领先到生态主导
小米SU7的端到端技术不仅是产品创新,更在推动行业标准与生态重构:
车路云协同:与华为合作推进5.5G-V2X,实现信号灯协同与紧急车辆优先通行57。
开发者生态:开放XOS系统接口,吸引第三方开发定制功能(如赛道模式、旅游路线推荐)68。
全球化适配:针对欧洲NCAP标准优化数据隐私方案,计划2026年进入德国市场48。
结语:重新定义智能驾驶的边界
小米SU7的端到端智能驾驶技术,通过架构革新、数据驱动与场景深耕,实现了从“功能叠加”到“体验重构”的跨越。其成功不仅在于技术领先,更在于对用户需求的深刻洞察——将安全、效率与情感化交互融为一体。未来,随着L4级技术突破与生态扩展,小米有望成为全球智能驾驶规则的制定者,引领出行方式的全新革命。
本文仅做学术分享,如有侵权,请联系删文。
论文辅导&招募辅导老师


3D硬件专区

3D视觉知识星球
扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),已沉淀7年,星球内资料包括:3D视觉系列视频近20+门、100+场直播顶会讲解、项目对接、3D视觉学习路线总结、最新顶会论文&代码、3D视觉行业最新模组、3D视觉优质源码汇总、书籍推荐、编程基础&学习工具、实战项目&作业、求职招聘&面经&面试题等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步!

3D视觉学习路线:www.3dcver.com

3D视觉交流群

— 完 —
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
3D视觉科技前沿进展日日相见 ~