toolformer,教会大语言模型使用api接口

文章介绍了一种方法,通过提示(prompt)使语言模型生成带API标签的文本,然后用这些数据对模型进行微调,使其能执行API调用。该方法解决了无标签数据的问题,特别在数学计算方面显示了显著改进。模型经过自我学习和迭代,可实现能力的提升,类似技术可能已被应用到产品中,如Office的Copilot。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

aim

此文章的意图在于:

To equip a language model 𝑀 with the ability to use different tools by means of API calls.

也就是是一个类似于chatGPT一样的模型能够获得调用API的能力。

方法概括

文章所使用的方法是有监督学习。
但是我们并没有类似下方带有标签的训练数据,这要怎么做呢?
在这里插入图片描述
本篇文章就采用了一个方法能够自己自足。

他直接使用Prompt的方式让语言模型自己生成带有API标签的文本数据
在这里插入图片描述
上图的意思是直接对大语言模型(你就把他当做chatgpt就行了)输入命令,我让大语言模型做一个API的生成器,然后用他返回的结果当做带标签的数据。

然后根据这些已有的API标签,进行API调用接口并返回结果。然后根据返回的结果的好坏去筛选,最后再根据新生成的带有API标签的数据集对大语言模型进行最后的微调,就可以生成能够使用API调用接口的大语言模型了。

简单地说,就是想论文描述的那样:
在这里插入图片描述就这么几步,就可以实现标签数据的自给自足。

你甚至还可以从最后一步再次跳到第一步,再次上述步骤,自己做自己的teacher,教会自己student进行“自我升级”。

更多的

文章所调用的API一共只有五个,但是他的方法可以泛化到更多的API。
在这里插入图片描述在实验结果上可以看到。本篇文章的模型对比PPT 3。有长足的进步,尤其是在数学能力方面一直被诟病的。大约模型不能够进行数学给你算。的缺点也被大幅改进了。
像现在很多的产品估计已经早早的使用了,这样子的技术方法,比如office的copilot(可能哈,自己猜的)。
在这里插入图片描述

更具体

其实更具体的还是得看论文,我这有个自制的小视频,里面也稍微讲了些
详见:https://www.bilibili.com/video/BV1vN411A7pV/

<think>嗯,用户问的是“大语言模型对齐是什么”,我需要先理解这个问题。首先,大语言模型应该指的是像GPT-3、GPT-4这样的大型语言模型。对齐(Alignment)这个词在机器学习里通常是指让模型的行为符合人类的意图或价值观。所以,用户可能想知道这些模型是如何被调整以确保它们安全、可靠,不会产生有害的输出。 接下来,我需要考虑用户的背景。可能他们是对AI技术有一定了解,但想更深入知道如何控制这些模型。或者他们可能听说过对齐问题,比如ChatGPT有时候会生成不合适的内容,所以想知道开发者是怎么解决这些问题的。也有可能用户是学生或研究者,需要这方面的知识用于学习或研究。 用户的需求可能不仅仅是定义,还希望了解对齐的重要性、方法以及挑战。他们可能没有明说,但深层需求是理解为什么对齐必要,以及如何实现。需要解释清楚对齐的目标,比如安全性、伦理、符合人类价值观,以及具体的技术手段,比如RLHF、数据过滤等。 要组织回答的结构。首先定义对齐,然后说明为什么需要对齐,再讲对齐的方法,最后可能提到挑战和未来方向。这样逻辑清晰,用户能逐步理解。要避免使用太专业的术语,但必要时需简单解释,比如RLHF可以展开为基于人类反馈的强化学习,这样更易懂。 还要注意可能的误区。比如,用户可能认为对齐就是简单的过滤敏感词,但其实更多是训练过程中的调整。或者可能不知道对齐不仅包括内容安全,还包括有用性和诚实性。需要澄清这些点,确保回答全面。 最后,检查是否有遗漏的重要点,比如对齐的挑战,如价值观多样性、对抗攻击等。这些补充能让回答更完整,帮助用户全面了解对齐的复杂性。确保语言口语化,避免生硬,让用户容易理解。**</think>大语言模型对齐(LLM Alignment)** 是指通过技术手段调整大型语言模型(如GPT、PaLM等)的行为,使其输出更加符合人类的意图、价值观或特定目标。这一概念的核心是解决模型生成内容时可能存在的**不一致性、偏见、有害性**等问题,确保其在实际应用中安全、可靠且符合伦理。 --- ### **为什么需要对齐?** 大语言模型通过海量数据训练,可能隐式学习到数据中的偏见、错误或有害内容。例如: - 生成虚假信息、暴力或歧视性内容。 - 无法区分用户指令的合法性(如协助违法请求)。 - 输出与人类伦理或社会规范冲突的答案。 对齐的目标是让模型在**有用性(Helpful)**、**诚实性(Honest)**和**无害性(Harmless)**之间取得平衡。 --- ### **对齐的常见方法** 1. **监督微调(Supervised Fine-Tuning, SFT)** - 用人工标注的高质量数据调整模型,直接教会模型“应该生成什么”。 2. **基于人类反馈的强化学习(RLHF)** - 人类对模型的不同输出进行评分,通过强化学习训练模型偏好符合人类价值观的答案。 3. **红队测试(Red Teaming)** - 模拟对抗性提问,主动发现模型漏洞并针对性修复。 4. **内容过滤与后处理** - 通过规则或分类器拦截有害输出(如暴力、仇恨言论等)。 5. **价值观注入** - 在训练数据或提示(Prompt)中嵌入伦理原则(如公平性、隐私保护)。 --- ### **对齐的挑战** - **价值观多样性**:不同文化、群体对“对齐标准”可能存在分歧。 - **过度对齐风险**:模型可能因过于保守而拒绝合理请求(例如回避争议话题)。 - **对抗攻击**:用户可能设计特殊指令绕过对齐机制(如“绕过内容审查”)。 - **长尾问题**:模型可能对罕见场景(如极端伦理困境)处理不当。 --- ### **对齐的意义** 对齐技术是大语言模型落地应用的关键。例如,ChatGPT的对话安全性、New Bing的搜索结果可靠性均依赖于对齐。未来,随着模型能力提升,对齐将更聚焦于**复杂价值观权衡**和**动态社会需求适应**,是AI伦理与安全的核心研究方向之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值