前言
LLM每次回答都要进行复杂的计算,尤其是需要多次调用模型的场景(比如连续推理、多轮对话),成本高得离谱。
-
关键矛盾:用户希望响应快(低延迟),企业想省钱(高吞吐)。
-
典型场景:
-
- 思维链推理(Chain-of-Thought):模型需要反复自我验证才能给出答案
- AI助理(如AutoGPT):自动规划任务流程时频繁调用模型
论文:A Survey on Inference Engines for Large Language Models: Perspectives on Optimization and Efficiency
链接:https://arxiv.org/pdf/2505.01658
推理流程与评估指标
推理引擎
工程师们开发了各种优化技术,核心目标是「用更少的资源,做更多的事」:
动态批处理(Dynamic Batching)
- 原理:把多个用户的请求像拼车一样合并处理
- 效果:GPU利用率提升30%+
- 代表作:vLLM的「连续批处理」技术
动态批处理与传统批处理的对比图
KV缓存(Key-Value Cache)
-
痛点:每次生成新token都要重复计算之前的上下文
-
解决方案:把中间结果(K和V矩阵)存起来复用
-
进阶玩法:
-
- 分页缓存(PagedAttention):像内存管理一样避免碎片化
- 量化缓存:用4比特存储代替16比特,内存占用直降75%
KV缓存工作原理示意图
模型量化(Quantization)
- 核心思想:把模型参数从「高精度浮点数」转为「低精度整数」
- 公式示例:
量化公式:
反量化:
其中是缩放因子,是零点偏移 - 实战效果:4比特量化让70B模型能在单张显卡运行
支持不同数据类型的推理引擎对比表
25款推理引擎
论文对比了开源和商业引擎的六大维度:通用性、易部署性、速度优化等:
开源模型
- vLLM:谷歌TPU/英伟达GPU通吃,吞吐量王者
- llama.cpp:纯CPU也能跑,MacBook本地部署神器
- TensorRT-LLM:英伟达亲儿子,核弹级CUDA优化
商业黑马
- GroqCloud:自研LPU芯片,延迟低至毫秒级
- Fireworks AI:支持AMD显卡,性价比杀手
雷达图对比各引擎特性
推理引擎的「进化方向」
多模态支持
- 现状:现有引擎主要优化文本,处理图像/视频力不从心
- 突破点:开发跨模态的注意力机制(如M-RoPE)
手机端推理
-
挑战:如何在内存有限的手机运行百亿参数模型?
-
前沿方案:
-
- PowerInfer:按需激活神经元,iPhone也能跑大模型
- MLC LLM:用编译器自动适配不同硬件
新型架构支持
- Mamba:抛弃传统Transformer,用状态空间模型实现线性复杂度
- Jamba:混合Mamba+Transformer,兼顾效率和性能
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
