预测和滤波是不一样的,看你怎么用了。
有时候需要先进行预测,预测之后才能得到当前观测值。比如在多目标跟踪过程中,用预测的值,去寻找当前观测值。然后用预测的值和找到的观测值融合求出最优估计去校正。因为找到了,才知道当前观测值。
因为在进行多目标跟踪的过程中,我们不知道哪个才是当前观测值,只有和预测值靠的很近的,我们认为他是我们要的观测值,如下图所示,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置,我们现在需要关联(A, A’)和(B, B’)。
我们可以先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联,关联上的就是当前的观测值,然后我们利用观测值来进行递归校正。如下所示,加入寻找到的观测值,进行递归校正。
目标跟踪是这样的,用的是预测功能。有的领域可能用的是他的滤波功能,对利用观测值进行求出最优估计,然后输出为我们所用。
参考:https://www.cnblogs.com/xiaozhi_5638/p/9376784.html
下面进行卡尔曼的理论讲解。
参考教材:秦永元—卡尔曼滤波与组合导航原理(第3版)
以上就是教材中关于卡尔曼滤波详细推理论证。
需要教材的请点击下载
关于卡尔曼滤波其他通俗易懂的参考博客:
详解卡尔曼滤波原理:https://blog.csdn.net/u010720661/article/details/63253509
浅谈卡尔曼滤波(Kalman Filter)(一):https://blog.csdn.net/baidu_21807307/article/details/51843079
卡尔曼滤波 – 从推导到应用(一):https://blog.csdn.net/heyijia0327/article/details/17487467
卡尔曼滤波的理解以及参数调整:https://blog.csdn.net/u013453604/article/details/50301477
学习OpenCV2——卡尔曼滤波(KalmanFilter)详解:
https://blog.csdn.net/gdfsg/article/details/50904811