学习OpenCV2——卡尔曼滤波(KalmanFilter)详解

        本文将简要回顾一下卡尔曼滤波理论,然后详细介绍如何在OpenCV中使用卡尔曼滤波进行跟踪,最后给两个程序实例。

1. 卡尔曼滤波理论回顾

      对于一个动态系统,我们首先定义一组状态空间方程

     状态方程:     

     测量方程:      

        xk是状态向量,zk是测量向量,Ak是状态转移矩阵,uk是控制向量,Bk是控制矩阵,wk是系统误差(噪声),Hk是测量矩阵,vk是测量误差(噪声)。wk和vk都是高斯噪声,即

                             

    整个卡尔曼滤波的过程就是个递推计算的过程,不断的“预测——更新——预测——更新……”

预测

     预测状态值:              

     预测最小均方误差:   

更新

    测量误差:                   

    测量协方差:                

    最优卡尔曼增益:         

    修正状态值:                

    修正最小均方误差:     


2.OpenCV中的KalmanFilter详解

OpenCV中有两个版本的卡尔曼滤波方法KalmanFilter(C++)和CvKalman(C),用法差不太多,这里只介绍KalmanFilter。

C++版本中将KalmanFilter封装到一个类中,其结构如下所示:

class CV_EXPORTS_W KalmanFilter
{
public:    
    CV_WRAP KalmanFilter();                                                                           //构造默认KalmanFilter对象
    CV_WRAP KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);  //完整构造KalmanFilter对象方法
    void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);              //初始化KalmanFilter对象,会替换原来的KF对象
  
    CV_WRAP const Mat& predict(const Mat& control=Mat());           //计算预测的状态值    
    CV_WRAP const Mat& correct(const Mat& measurement);             //根据测量值更新状态值

    Mat statePre;            //预测值 (x'(k)): x(k)=A*x(k-1)+B*u(k)
    Mat statePost;           //状态值 (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
    Mat transitionMatrix;    //状态转移矩阵 (A)
    Mat controlMatrix;       //控制矩阵 B 
    Mat measurementMatrix;   //测量矩阵 H
    Mat processNoiseCov;     //系统误差 Q
    Mat measurementNoiseCov; //测量误差 R
    Mat errorCovPre;         //最小均方误差 (P'(k)): P'(k)=A*P(k-1)*At + Q)
    Mat gain;                //卡尔曼增益   (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
    Mat errorCovPost;        //修正的最小均方误差 (P(k)): P(k)=(I-K(k)*H)*P'(k)

    // 临时矩阵
    Mat temp1;
    Mat temp2;
    Mat temp3;
    Mat temp4;
    Mat temp5;
};

enum
{
    OPTFLOW_USE_INITIAL_FLOW = CV_LKFLOW_INITIAL_GUESSES,
    OPTFLOW_LK_GET_MIN_EIGENVALS = CV_LKFLOW_GET_MIN_EIGENVALS,
    OPTFLOW_FARNEBACK_GAUSSIAN = 256
};


       函数原型见:…..\OpenCV2\sources\modules\ocl\src\kalman.cpp

       只有四个方法: 构造KF对象KalmanFilter(DP,MP,CP)、初始化KF对象init(DP,MP,CP)、预测predict( )、更新correct( )。除非你要重新构造KF对象,否则用不到init( )。

KalmanFilter(DP,MP,CP)和init( )就是赋值,没什么好说的。

      注意:KalmanFilter结构体中并没有测量值,测量值需要自己定义,而且一定要定义,因为后面要用。


编程步骤

step1:定义KalmanFilter类并初始化

    //构造KF对象

    KalmanFilter KF(DP, MP, 0);

    //初始化相关参数

    KF.transitionMatrix                         转移矩阵 A

    KF.measurementMatrix                  测量矩阵    H

    KF.processNoiseCov                     过程噪声 Q

    KF.measurementNoiseCov            测量噪声        R

    KF.errorCovPost                            最小均方误差 P

    KF.statePost                                系统初始状态 x(0) 

    Mat measurement                          定义初始测量值 z(0) 

step2:预测

    KF.predict( )                                                 //返回的是下一时刻的状态值KF.statePost (k+1) 

step3:更新

    更新measurement;                                     //注意measurement不能通过观测方程进行计算得到,要自己定义!

    更新KF   KF.correct(measurement)

最终的结果应该是更新后的statePost.


相关参数的确定

    对于系统状态方程,简记为Y=AX+B,X和Y是表示系统状态的列向量,A是转移矩阵,B是其他项。

    状态值(向量)只要能表示系统的状态即可,状态值的维数决定了转移矩阵A的维数,比如X和Y是N×1的,则A是N×N的。

    A的确定跟X有关,只要保证方程中不相干项的系数为0即可,看下面例子

      X和Y是二维的,

       X和Y是三维的,

          X和Y是三维的,但c和△ c是相关项

      上面的1也可以是其他值。



下面对predict( ) 和correct( )函数介绍下,可以不用看,不影响编程。

CV_EXPORTS const oclMat& KalmanFilter::predict(const oclMat& control)
{
    gemm(transitionMatrix, statePost, 1, oclMat(), 0, statePre);
    oclMat temp;

    if(control.data)
        gemm(controlMatrix, control, 1, statePre, 1, statePre);
    gemm(transitionMatrix, errorCovPost, 1, oclMat(), 0, temp1);
    gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T);
    statePre.copyTo(statePost);
    return statePre;
}

gemm( )是矩阵的广义乘法

void gemm(const GpuMat& src1, constGpuMat& src2, double alpha, const GpuMat& src3, double beta,GpuMat& dst, int flags=0, Stream& stream=Stream::Null())

    dst = alpha · src1 · src2 +beta· src3

   上面,oclMat()其实是uk,只不过默认为0,所以没赋值。整个过程就计算了x'和P’。(用x'代表x的预测值,用P'代表P的预测值)。GEMM_2_T表示对第2个参数转置。

x’(k)=1·A·x(k-1)

如果B非空, x'(k) = 1·B·u + 1·x'(k-1)

temp1 = 1·A·P(k-1) + 0·u(k)

P’(k) = 1· temp1·AT + 1· Qk= A·P(k-1)·AT + 1· Qk

       可见,和第一部分的理论介绍完全一致。

CV_EXPORTS const oclMat& KalmanFilter::correct(const oclMat& measurement)
{
    CV_Assert(measurement.empty() == false);
    gemm(measurementMatrix, errorCovPre, 1, oclMat(), 0, temp2);
    gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T);
    Mat temp;
    solve(Mat(temp3), Mat(temp2), temp, DECOMP_SVD);
    temp4.upload(temp);
    gain = temp4.t();
    gemm(measurementMatrix, statePre, -1, measurement, 1, temp5);
    gemm(gain, temp5, 1, statePre, 1, statePost);
    gemm(gain, temp2, -1, errorCovPre, 1, errorCovPost);
    return statePost;
}
bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)

求解线型最小二乘估计



temp2 = 1· H·P’ + 0·u(k)

temp3 = 1· temp2·HT + 1·R = H·P’·HT+ 1· R   也就是上面的Sk

temp = argmin||tem2- temp3||

K=temp

temp5 = -1· H·x’ + 1·zk        就是上面的y’。

x = 1·K·temp5 + 1·x’ = KT·y’ +x’

P =-1·K·temp2 + 1·P’ = -K·H·P’+P’ = (I- K·H) P’

也和第一部分的理论完全一致。


通过深入函数内部,学到了两个实用的函数哦。矩阵广义乘法gemm( )、最小二乘估计solve( )


补充

1)以例2为例,为什么状态值一般都设置成(x,y,△x,△y)?我们不妨设置成(x,y,△x),对应的转移矩阵也改成3×3的。可以看到仍能跟上,不过在x方向跟踪速度快,在y方向跟踪速度慢。进一步设置成(x,y)和2×2的转移矩阵,程序的跟踪速度简直是龟速。所以,简单理解,△x和△y严重影响对应方向上的跟踪速度。



3.实例

例1 OpenCV自带的示例程序

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;

//计算相对窗口的坐标值,因为坐标原点在左上角,所以sin前有个负号
static inline Point calcPoint(Point2f center, double R, double angle)
{
    return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}

static void help()
{
    printf( "\nExamle of c calls to OpenCV's Kalman filter.\n"
"   Tracking of rotating point.\n"
"   Rotation speed is constant.\n"
"   Both state and measurements vectors are 1D (a point angle),\n"
"   Measurement is the real point angle + gaussian noise.\n"
"   The real and the estimated points are connected with yellow line segment,\n"
"   the real and the measured points are connected with red line segment.\n"
"   (if Kalman filter works correctly,\n"
"    the yellow segment should be shorter than the red one).\n"
            "\n"
"   Pressing any key (except ESC) will reset the tracking with a different speed.\n"
"   Pressing ESC will stop the program.\n"
            );
}

int main(int, char**)
{
    help();
    Mat img(500, 500, CV_8UC3);
    KalmanFilter KF(2, 1, 0);                                    //创建卡尔曼滤波器对象KF
    Mat state(2, 1, CV_32F);                                     //state(角度,△角度)
    Mat processNoise(2, 1, CV_32F);
    Mat measurement = Mat::zeros(1, 1, CV_32F);                 //定义测量值
    char code = (char)-1;

    for(;;)
    {
		//1.初始化
        randn( state, Scalar::all(0), Scalar::all(0.1) );          //
        KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);  //转移矩阵A[1,1;0,1]    
		

		//将下面几个矩阵设置为对角阵
        setIdentity(KF.measurementMatrix);                             //测量矩阵H
        setIdentity(KF.processNoiseCov, Scalar::all(1e-5));            //系统噪声方差矩阵Q
        setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));        //测量噪声方差矩阵R
        setIdentity(KF.errorCovPost, Scalar::all(1));                  //后验错误估计协方差矩阵P

        randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));          //x(0)初始化
		
        for(;;)
        {
            Point2f center(img.cols*0.5f, img.rows*0.5f);          //center图像中心点
            float R = img.cols/3.f;                                //半径
            double stateAngle = state.at<float>(0);                //跟踪点角度
            Point statePt = calcPoint(center, R, stateAngle);     //跟踪点坐标statePt

			//2. 预测
            Mat prediction = KF.predict();                       //计算预测值,返回x'
            double predictAngle = prediction.at<float>(0);          //预测点的角度
            Point predictPt = calcPoint(center, R, predictAngle);   //预测点坐标predictPt


			//3.更新
			//measurement是测量值
            randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));     //给measurement赋值N(0,R)的随机值

            // generate measurement
            measurement += KF.measurementMatrix*state;  //z = z + H*x;
			
            double measAngle = measurement.at<float>(0);
            Point measPt = calcPoint(center, R, measAngle);

            // plot points
			//定义了画十字的方法,值得学习下
            #define drawCross( center, color, d )                                 \
                line( img, Point( center.x - d, center.y - d ),                \
                             Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \
                line( img, Point( center.x + d, center.y - d ),                \
                             Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )

            img = Scalar::all(0);
            drawCross( statePt, Scalar(255,255,255), 3 );
            drawCross( measPt, Scalar(0,0,255), 3 );
            drawCross( predictPt, Scalar(0,255,0), 3 );
            line( img, statePt, measPt, Scalar(0,0,255), 3, CV_AA, 0 );
            line( img, statePt, predictPt, Scalar(0,255,255), 3, CV_AA, 0 );


			//调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
			if(theRNG().uniform(0,4) != 0)
                KF.correct(measurement);

			//不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
            randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));   //vk
            state = KF.transitionMatrix*state + processNoise;   

            imshow( "Kalman", img );
            code = (char)waitKey(100);

            if( code > 0 )
                break;
        }
        if( code == 27 || code == 'q' || code == 'Q' )
            break;
    }

    return 0;
}
程序结果


例2  跟踪鼠标位置

在我介绍粒子滤波的博文“学习Opencv2——粒子滤波Condensation算法”里,有个例3,是跟踪鼠标位置。现在我们用卡尔曼滤波来实现。

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdio.h>
using namespace cv;
using namespace std;

const int winHeight=600;
const int winWidth=800;


Point mousePosition= Point(winWidth>>1,winHeight>>1);

//mouse event callback
void mouseEvent(int event, int x, int y, int flags, void *param )
{
	if (event==CV_EVENT_MOUSEMOVE) {
		mousePosition = Point(x,y);
	}
}

int main (void)
{
	RNG rng;
	//1.kalman filter setup
	const int stateNum=4;                                      //状态值4×1向量(x,y,△x,△y)
	const int measureNum=2;                                    //测量值2×1向量(x,y)	
	KalmanFilter KF(stateNum, measureNum, 0);	

	KF.transitionMatrix = *(Mat_<float>(4, 4) <<1,0,1,0,0,1,0,1,0,0,1,0,0,0,0,1);  //转移矩阵A
	setIdentity(KF.measurementMatrix);                                             //测量矩阵H
	setIdentity(KF.processNoiseCov, Scalar::all(1e-5));                            //系统噪声方差矩阵Q
	setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));                        //测量噪声方差矩阵R
	setIdentity(KF.errorCovPost, Scalar::all(1));                                  //后验错误估计协方差矩阵P
	rng.fill(KF.statePost,RNG::UNIFORM,0,winHeight>winWidth?winWidth:winHeight);   //初始状态值x(0)
	Mat measurement = Mat::zeros(measureNum, 1, CV_32F);                           //初始测量值x'(0),因为后面要更新这个值,所以必须先定义
	
	namedWindow("kalman");
	setMouseCallback("kalman",mouseEvent);
		
	Mat image(winHeight,winWidth,CV_8UC3,Scalar(0));

	while (1)
	{
		//2.kalman prediction
		Mat prediction = KF.predict();
		Point predict_pt = Point(prediction.at<float>(0),prediction.at<float>(1) );   //预测值(x',y')

		//3.update measurement
		measurement.at<float>(0) = (float)mousePosition.x;
		measurement.at<float>(1) = (float)mousePosition.y;		

		//4.update
		KF.correct(measurement);

		//draw 
		image.setTo(Scalar(255,255,255,0));
		circle(image,predict_pt,5,Scalar(0,255,0),3);    //predicted point with green
		circle(image,mousePosition,5,Scalar(255,0,0),3); //current position with red		
		
		char buf[256];
		sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);
		putText(image,buf,Point(10,30),CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,Scalar(0,0,0),1,8);
		sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);
		putText(image,buf,cvPoint(10,60),CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,Scalar(0,0,0),1,8);
		
		imshow("kalman", image);
		int key=waitKey(3);
		if (key==27){//esc   
			break;   
		}		
	}
}

结果



例3 

#include "opencv2/video/tracking.hpp" 
#include <opencv2/legacy/legacy.hpp>    //#include "cvAux.h"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core/core.hpp>
#include <stdio.h>

using namespace cv;
using namespace std;

int main( )  
{  
	float A[10][3] = 
	{
		10,    50,     15.6,
		12,    49,     16,
		11,    52,     15.8,
		13,    52.2,   15.8,
		12.9,  50,     17,
		14,    48,     16.6,
		13.7,  49,     16.5,
		13.6,  47.8,   16.4,
		12.3,  46,     15.9,
		13.1,  45,     16.2
	};	

	const int stateNum=3;
	const int measureNum=3;
	KalmanFilter KF(stateNum, measureNum, 0); 
	KF.transitionMatrix = *(Mat_<float>(3, 3) <<1,0,0,0,1,0,0,0,1);  //转移矩阵A  
	setIdentity(KF.measurementMatrix);                                             //测量矩阵H  
	setIdentity(KF.processNoiseCov, Scalar::all(1e-5));                            //系统噪声方差矩阵Q  
	setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));                        //测量噪声方差矩阵R  
	setIdentity(KF.errorCovPost, Scalar::all(1)); 
	Mat measurement = Mat::zeros(measureNum, 1, CV_32F); 
	
	//初始状态值
	KF.statePost = *(Mat_<float>(3, 1) <<A[0][0],A[0][1],A[0][2]); 
	cout<<"state0="<<KF.statePost<<endl;

	for(int i=1;i<=9;i++)
	{
	    //预测
	    Mat prediction = KF.predict(); 			
            //计算测量值
	    measurement.at<float>(0) = (float)A[i][0];  
	    measurement.at<float>(1) = (float)A[i][1]; 
	    measurement.at<float>(2) = (float)A[i][2]; 
	    //更新
	    KF.correct(measurement);  
            //输出结果
	    cout<<"predict ="<<"\t"<<prediction.at<float>(0)<<"\t"<<prediction.at<float>(1)<<"\t"<<prediction.at<float>(2)<<endl;
	    cout<<"measurement="<<"\t"<<measurement.at<float>(0)<<"\t"<<measurement.at<float>(1)<<"\t"<<measurement.at<float>(2)<<endl;
	    cout<<"correct ="<<"\t"<<KF.statePost.at<float>(0)<<"\t"<<KF.statePost.at<float>(1)<<"\t"<<KF.statePost.at<float>(2)<<endl;
	}
	system("pause");
} 
结果如下


这里预测值和上一个状态值一样,原因是转移矩阵A是单位阵,如果改成非单位阵,结果就不一样了。


  • 72
    点赞
  • 449
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
OpenCV中,扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种基于卡尔曼滤波理论的变种滤波器,用于非线性系统的状态估计。扩展卡尔曼滤波与标准卡尔曼滤波的区别在于,它通过在传感器模型和状态转移模型中使用一阶泰勒级数展开来近似非线性函数。这种近似可以使扩展卡尔曼滤波适用于更广泛的实际应用中。 在OpenCV中使用扩展卡尔曼滤波进行跟踪的步骤如下: 1. 创建扩展卡尔曼滤波器对象,使用KalmanFilter类的构造函数指定状态和测量的维度。 2. 初始化状态矩阵、协方差矩阵和过程噪声协方差矩阵。 3. 在每个时间步中,通过调用KalmanFilter类的predict()方法来进行状态预测,根据系统的状态转移矩阵和过程噪声协方差矩阵更新状态和协方差。 4. 根据测量结果,调用KalmanFilter类的correct()方法来进行状态修正,根据测量矩阵和测量噪声协方差矩阵更新状态和协方差。 扩展卡尔曼滤波OpenCV中的使用方式与标准卡尔曼滤波类似,只是需要定义系统的非线性函数和测量的非线性函数,并在初始化滤波器对象时指定这些函数。 参考文献: OpenCV Documentation: Kalman Filter OpenCV Tutorials: Introduction to Kalman Filter OpenCV Tutorials: Mouse as a Paint-Brush - Using Kalman Filter<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [学习OpenCV2——卡尔曼滤波(KalmanFilter)详解](https://blog.csdn.net/GDFSG/article/details/50904811)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值