基于 MobileNetv3 的人脸面部表情识别

本文介绍了如何利用 MobileNetv3 架构在 Python 和 TensorFlow 中构建人脸面部表情识别模型。通过预处理数据、构建模型、训练和评估,实现资源受限环境下的高效情感识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人脸面部表情识别是计算机视觉领域的一个重要研究方向,它可以通过分析面部表情来推测人的情感状态,对于情感识别、人机交互等应用具有广泛的应用前景。在本文中,我将介绍如何使用基于 MobileNetv3 的模型来实现人脸面部表情识别,并提供相应的源代码。

MobileNetv3 是一种轻量级的卷积神经网络架构,它具有较小的模型大小和更快的推理速度,非常适合在移动设备等资源受限的环境中进行人脸面部表情识别。

首先,我们需要准备训练数据集。可以使用公开的人脸表情数据集,例如FER2013、CK+等。这些数据集包含了不同人的面部表情图像和对应的标签,可以作为我们的训练样本。

接下来,我们使用 Python 编程语言和深度学习框架 TensorFlow 来实现基于 MobileNetv3 的人脸面部表情识别模型。下面是代码示例:

import tensorflow as tf
from tensorflow.keras.applications import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值