人脸面部表情识别是计算机视觉领域的一个重要研究方向,它可以通过分析面部表情来推测人的情感状态,对于情感识别、人机交互等应用具有广泛的应用前景。在本文中,我将介绍如何使用基于 MobileNetv3 的模型来实现人脸面部表情识别,并提供相应的源代码。
MobileNetv3 是一种轻量级的卷积神经网络架构,它具有较小的模型大小和更快的推理速度,非常适合在移动设备等资源受限的环境中进行人脸面部表情识别。
首先,我们需要准备训练数据集。可以使用公开的人脸表情数据集,例如FER2013、CK+等。这些数据集包含了不同人的面部表情图像和对应的标签,可以作为我们的训练样本。
接下来,我们使用 Python 编程语言和深度学习框架 TensorFlow 来实现基于 MobileNetv3 的人脸面部表情识别模型。下面是代码示例:
import tensorflow as tf
from tensorflow.keras.applications import