机器翻译及相关技术&&注意力机制和Seq2seq模型&&Transformer

一.机器翻译及相关技术

1.1 机器翻译(MT):
将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。

1.2 Encoder-Decoder
encoder:输入到隐藏状态
decoder:隐藏状态到输出
在这里插入图片描述
1.3 Sequence to Sequence模型
1.3.1训练
在这里插入图片描述

def train_ch7(model, data_iter, lr, num_epochs, device):  # Saved in d2l
    model.to(device)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    loss = MaskedSoftmaxCELoss()
    tic = time.time()
    for epoch in range(1, num_epochs+1):
        l_sum, num_tokens_sum = 0.0, 0.0
        for batch in data_iter:
            optimizer.zero_grad()
            X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch]
            Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1
            
            Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
            l = loss(Y_hat, Y_label, Y_vlen).sum()
            l.backward()

            with torch.no_grad():
                d2l.grad_clipping_nn(model, 5, device)
            num_tokens = Y_vlen.sum().item()
            optimizer.step()
            l_sum += l.sum().item()
            num_tokens_sum += num_tokens

1.3.2 预测
在这里插入图片描述

def translate_ch7(model, src_sentence, src_vocab, tgt_vocab, max_len, device):
    src_tokens = src_vocab[src_sentence.lower().split(' ')]
    src_len = len(src_tokens)
    if src_len < max_len:
        src_tokens += [src_vocab.pad] * (max_len - src_len)
    enc_X = torch.tensor(src_tokens, device=device)
    enc_valid_length = torch.tensor([src_len], device=device)
    # use expand_dim to add the batch_size dimension.
    enc_outputs = model.encoder(enc_X.unsqueeze(dim=0), enc_valid_length)
    dec_state = model.decoder.init_state(enc_outputs, enc_valid_length)
    dec_X = torch.tensor([tgt_vocab.bos], device=device).unsqueeze(dim=0)
    predict_tokens = []
    for _ in range(max_len):
        Y, dec_state = model.decoder(dec_X, dec_state)
        # The token with highest score is used as the next time step input.
        dec_X = Y.argmax(dim=2)
        py = dec_X.squeeze(dim=0).int().item()
        if py == tgt_vocab.eos:
            break
        predict_tokens.append(py)

1.3.4 具体结构
在这里插入图片描述
1.4 Beam Search
在这里插入图片描述
在这里插入图片描述
获得的都是局部最优解.

二.注意力机制和Seq2seq模型

2.1 注意力机制
编码器—解码器(seq2seq),当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降。
解码的目标词语可能只与原输入的部分词语有关,而并不是与所有的输入有关。例如,当把“Hello world”翻译成“Bonjour le monde”时,“Hello”映射成“Bonjour”,“world”映射成“monde”。
在这里插入图片描述
2.2 注意力机制框架
Attention 是一种通用的带权池化方法,输入由两部分构成:询问(query)和键值对(key-value pairs)attention layer得到输出与value的维度一致 𝐨∈ℝ𝑑𝑣. 对于一个query来说,attention layer 会与每一个key计算注意力分数并进行权重的归一化,输出的向量o则是value的加权求和,而每个key计算的权重与value一一对应。
为了计算输出,我们首先假设有一个函数α 用于计算querykey的相似性,然后可以计算所有的 attention scores a1,…,an by
在这里插入图片描述
我们使用 softmax函数 获得注意力权重:
在这里插入图片描述
最终的输出就是value的加权求和:
在这里插入图片描述
在这里插入图片描述
2.2.1 超出二维矩阵的乘法
在这里插入图片描述
2.2.2 点积注意力
在这里插入图片描述

        d = query.shape[-1]
        # set transpose_b=True to swap the last two dimensions of key
        
        scores = torch.bmm(query, key.transpose(1,2)) / math.sqrt(d)
        attention_weights = self.dropout(masked_softmax(scores, valid_length))

2.2.3 多层感知机注意力
在这里插入图片描述

def forward(self, query, key, value, valid_length):
        query, key = self.W_k(query), self.W_q(key)
        #print("size",query.size(),key.size())
        # expand query to (batch_size, #querys, 1, units), and key to
        # (batch_size, 1, #kv_pairs, units). Then plus them with broadcast.
        features = query.unsqueeze(2) + key.unsqueeze(1)
        #print("features:",features.size())  #--------------开启
        scores = self.v(features).squeeze(-1) 
        attention_weights = self.dropout(masked_softmax(scores, valid_length))

2.3.引入注意力机制的Seq2seq模型
在时间步为t的时候。此刻attention layer保存着encodering看到的所有信息——即encoding的每一步输出。在decoding阶段,解码器的t时刻的隐藏状态被当作queryencoder的每个时间步的hidden states作为keyvalue进行attention聚合. Attetion model的输出当作成上下文信息context vector,并与解码器输入Dt拼接起来一起送到解码器:
在这里插入图片描述
下面展示了encoder和decoder的layer结构
在这里插入图片描述

三 .Transformer

CNNs 易于并行化,却不适合捕捉变长序列内的依赖关系。
RNNs 适合捕捉长距离变长序列的依赖,但是却难以实现并行化处理序列。
3.1 Transformer模型的架构
Transformer blocks: 将seq2seq模型重的循环网络替换为了Transformer Blocks,该模块包含一个多头注意力层(Multi-head Attention Layers)以及两个position-wise feed-forward networks(FFN)。对于解码器来说,另一个多头注意力层被用于接受编码器的隐藏状态。
Add and norm: 多头注意力层和前馈网络的输出被送到两个“add and norm”层进行处理,该层包含残差结构以及层归一化。
Position encoding: 由于自注意力层并没有区分元素的顺序,所以一个位置编码层被用于向序列元素里添加位置信息。
在这里插入图片描述
3.2 多头注意力层
先来迅速理解以下自注意力(self-attention)的结构。自注意力模型是一个正规的注意力模型,序列的每一个元素对应的keyvaluequery是完全一致的。
在这里插入图片描述
多头注意力层:
在这里插入图片描述
在这里插入图片描述
3.3 基于位置的前馈网络
Transformer 模块另一个非常重要的部分就是基于位置的前馈网络(FFN),它接受一个形状为(batch_size,seq_length, feature_size)的三维张量。Position-wise FFN由两个全连接层组成,他们作用在最后一维上。因为序列的每个位置的状态都会被单独地更新,所以我们称他为position-wise,这等效于一个1x1的卷积。

3.4 Add and Norm
它可以平滑地整合输入和其他层的输出,因此我们在每个多头注意力层和FFN层后面都添加一个含残差连接的Layer Norm层。这里 Layer Norm 与7.5小节的Batch Norm很相似,唯一的区别在于Batch Norm是对于batch size这个维度进行计算均值和方差的,而Layer Norm则是对最后一维进行计算。
3.5 位置编码
在这里插入图片描述
3.5 编码器
编码器包含一个多头注意力层,一个position-wise FFN,和两个 Add and Norm层。对于attention模型以及FFN模型,我们的输出维度都是与embedding维度一致的,这也是由于残差连接天生的特性导致的,因为我们要将前一层的输出与原始输入相加并归一化。

3.6解码器
该模块也是多头注意力层,接受编码器的输出作为key和valuedecoder的状态作为query。与编码器部分相类似,解码器同样是使用了add and norm机制,用残差和层归一化将各个子层的输出相连。

仔细来讲,在第t个时间步,当前输入xtquery,那么self attention接受了第t步以及前t-1步的所有输入x1,…,xt−1。在训练时,由于第t位置的输入可以观测到全部的序列,这与预测阶段的情形项矛盾,所以我们要通过将第t个时间步所对应的可观测长度设置为t,以消除不需要看到的未来的信息。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值