一.几何变换
1.1 变换形式
式中的T就是变换矩阵,其中 (v,w)为原坐标,(x,y) 为变换后的坐标,不同的变换对应不同的矩阵,这里也贴出来吧,一些常见的变换矩阵及作用如下表:
1.2 坐标系变换
变换中心,对于缩放、平移可以以图像坐标原点(图像左上角为原点)为中心变换,这不用坐标系变换,直接按照一般形式计算即可。而对于旋转和偏移,一般是以图像中心为原点,那么这就涉及坐标系转换了。
因此,对于旋转和偏移,就需要3步(3次变换):
1.将输入原图图像坐标转换为笛卡尔坐标系;
2.进行旋转计算。旋转矩阵前面已经给出了;
3.将旋转后的图像的笛卡尔坐标转回图像坐标。
图像坐标系与笛卡尔坐标系转换关系:
在图像中我们的坐标系通常是AB和AC方向的,原点为A,而笛卡尔直角坐标系是DE和DF方向的,原点为D。 令图像表示为M×N的矩阵,对于点A而言,两坐标系中的坐标分别是(0,0)和(-N/2,M/2),则图像某像素点(x’,y’)转换为笛卡尔坐标(x,y)转换关系为,x为列,y为行:
逆变换为:
于是,根据前面说的3个步骤(3次变换),旋转(顺时针旋转)的变换形式就为,3次变换就有3个矩阵:
//旋转角度
double angle = 45;
cv::Size src_sz = src.size();
cv::Size dst_sz(src_sz.height, src_sz.width);
int len = std::max(src.cols, src.rows);
//指定旋转中心(图像中点)
cv::Point2f center(len / 2., len / 2.);
//获取旋转矩阵(2x3矩阵)
cv::Mat rot_mat = cv::getRotationMatrix2D(center, angle, 1.0);
//根据旋转矩阵进行仿射变换
cv::warpAffine(src, dst, rot_mat, dst_sz);
//显示旋转效果
cv::imshow("image", src);
cv::imshow("result", dst);