一. 简介
- 由于相机或物体的运动变化,参考帧和相邻帧之间并不对齐。大多数VSR 选用光流方法来对齐。
- 基于对齐模型的方法,其性能极大依赖于光流预测的正确性,不准确的光流会导致伪影产生,这些伪影也会传播到重构的HR视频帧中。
- 作者提出的时间可变形对齐网络(TDAN),无需计算光流,自适应地在特征层面进行对齐。
- TDAN使用参考帧和每个相邻帧的特征来动态预测采样卷积核的偏移量,用该采样核对相邻帧进行对齐操作。
二. 网络结构
整体框架
- 整体框架包括时间可变形对齐网络和超分网络两部分。
- 每个相邻帧分别和参考帧一起送入可变形对齐网络,再将得到的特征重建为对应的I i L R ′ _i^{LR'} iLR′。
- 将所有的重建的I i L R ′ _i^{LR'}