TDAN: Temporally Deformable Alignment Network for Video Super-Resolution论文笔记

TDAN是一种无需光流估计,通过特征层面动态对齐的视频超分辨率方法。它包含时间可变形对齐网络和超分网络,解决了传统方法中光流不准确导致的伪影问题。通过特征提取、可变形对齐、对齐帧重建和超分网络,TDAN能有效提升视频帧的重建质量。实验显示,TDAN在Vimeo和Vid4数据集上表现出色,尤其是在帧边界恢复方面优于DUF方法。
摘要由CSDN通过智能技术生成

论文链接

一. 简介

  • 由于相机或物体的运动变化,参考帧和相邻帧之间并不对齐。大多数VSR 选用光流方法来对齐。
  • 基于对齐模型的方法,其性能极大依赖于光流预测的正确性,不准确的光流会导致伪影产生,这些伪影也会传播到重构的HR视频帧中。
  • 作者提出的时间可变形对齐网络(TDAN),无需计算光流,自适应地在特征层面进行对齐。
  • TDAN使用参考帧和每个相邻帧的特征来动态预测采样卷积核的偏移量,用该采样核对相邻帧进行对齐操作。

二. 网络结构

整体框架

在这里插入图片描述

  • 整体框架包括时间可变形对齐网络和超分网络两部分。
  • 每个相邻帧分别和参考帧一起送入可变形对齐网络,再将得到的特征重建为对应的I i L R ′ _i^{LR'} iLR
  • 将所有的重建的I i L R ′ _i^{LR'}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值