这篇博客主要记录人大出版《应用时间序列分析》第二章的笔记。本章主要介绍进行时序分析前的预处理,即平稳性检验与纯随机性检验。
平稳性检验(描述性)
平稳性检验的方法分为描述性方法与计量性方法。前者主要指时序图检验、ACF 图检验,后者主要指 DF 检验、ADF 检验与PP检验。由于计量性方法需要 ARMA 模型的相关知识,这篇博客仅仅介绍描述性方法。
时序图检验
时序图检验即是通过观察时序图来判断时间序列是否平稳。Python 中画时序图的代码如下:
import pandas as pd
import matplotlib.pyplot as plt
data = pd.DataFrame({'2010-01-01': 10.00, '2010-01-02': 13.00, '2010-01-04': 13.50, '2010-01-05': 13.50, '2010-01-06': 14.50, '2010-01-07': 16.00, '2010-01-08': 20.50, '2010-01-10': 24.50, '2010-01-11': 27.50, '2010-01-12': 30.50}, index=['price'])
data = data.T
data['price'].plot()
plt.show()
作图结果如下:
其实就