平稳性检验(描述性)与纯随机性检验

这篇博客主要记录人大出版《应用时间序列分析》第二章的笔记。本章主要介绍进行时序分析前的预处理,即平稳性检验与纯随机性检验。

平稳性检验(描述性)

平稳性检验的方法分为描述性方法与计量性方法。前者主要指时序图检验、ACF 图检验,后者主要指 DF 检验、ADF 检验与PP检验。由于计量性方法需要 ARMA 模型的相关知识,这篇博客仅仅介绍描述性方法。

时序图检验

时序图检验即是通过观察时序图来判断时间序列是否平稳。Python 中画时序图的代码如下:

import pandas as pd
import matplotlib.pyplot as plt
data = pd.DataFrame({'2010-01-01': 10.00, '2010-01-02': 13.00, '2010-01-04': 13.50, '2010-01-05': 13.50, '2010-01-06': 14.50, '2010-01-07': 16.00, '2010-01-08': 20.50, '2010-01-10': 24.50, '2010-01-11': 27.50, '2010-01-12': 30.50}, index=['price'])
data = data.T
data['price'].plot()
plt.show()

作图结果如下:

其实就

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值