一、Deepseek的模型架构:如何让AI更聪明?
Deepseek的模型架构核心依然是Transformer,但它在此基础上进行了许多优化,使得AI不仅能理解更长的文本,还能更高效地进行计算。一个关键的改进点是专家混合(MoE,Mixture of Experts)结构,这个概念可以类比成“一个团队里有许多不同领域的专家”,当你向AI提问时,它不会让所有专家同时来回答,而是根据问题的类型,选择最合适的几位专家来处理任务,这样既能提高AI的智能水平,又能减少计算资源的消耗。例如,一个AI可以既懂金融,又懂医学,但当你问它“如何投资股票”时,它会调用“金融专家”而不是“医学专家”,从而提高效率。
此外,Deepseek还可能使用了分层注意力机制(Hierarchical Attention), 这就像是在读一本厚书时,既要关注每个句子的细节(局部注意力),又要理解整本书的核心思想(全局注意力)。传统的AI模型在处理长篇文章时往往会“遗忘”前面的内容,而Deepseek的技术可以在阅读时建立更好的层次结构,让AI更精准地理解和记住关键信息。这意味着,当你给AI输入一篇长达几千字的文章时,它不会像普通人那样“读到一半就忘了前面写了什么”,而是能够在整体上建立更清晰的逻辑。此外,Deepseek也采取了动态参数共享技术,这使得不同层可以共享某些参数,从而减少冗余计算。
简单来说,这就像是在团队合作中,某些通用技能或知识点可以被多个成员共享,而不是每个人都需要单独学习一遍。例如,一个公司的不同部门可能都会用到Excel,但如果每个部门都单独培训自己的员工,不仅费时费力,还会导致重复性工作。而Deepseek的动态参数共享机制,就像是给AI配备了一个“内部共享数据库”,让不同层的计算单元可以调用相同的参数,而不需要重复计算,从而提高计算效率并减少内存占用。这种方法不仅优化了计算资源的使用,还能提高模型的泛化能力。因为当不同层共享某些通用知识时,AI能够更好地理解跨领域的信息,避免某些层“单打独斗”导致的信息断裂。比方说,如果AI在理解一篇文章时,某些层专注于细节,而某些层专注于整体结构,那么共享参数可以帮助这些层之间更好地协作,使得AI在处理复杂问题时更加协调一致。这种方法尤其适用于长文本处理、跨语言翻译和多任务学习等需要高效信息整合的场景。
二、训练方法:如何让AI变得“更聪明”?
AI之所以能生成有逻辑的回答,离不开庞大的训练数据。Deepseek在训练过程中,可能使用了多种数据源,比如国内的贴吧、知乎、小红书、知网,海外的维基百科、Google Scholar、新闻文章、学术论文等,并通过去重、过滤和数据清理的方式,确保AI学习的是高质量信息,而不是互联网上的垃圾数据。这个方面,我们认为Deep应该和Open ai的GPT类似,都是采用了强化学习+人类反馈(RLHF,Reinforcement Learning from Human Feedback),这一技术可以简单理解为:AI先生成多个答案,人类给这些答案打分,然后AI学习人类的偏好,从而不断优化自己的输出。这就像一个学生在写作文后,老师给出评分和修改建议,学生根据反馈不断提高自己的写作水平。这种训练方式能够让AI的回答更符合人类的逻辑,避免出现过于机械化的内容。
此外,在上述工序后,Deepseek也很大几率也使用近端策略优化(PPO,Proximal Policy Optimization)方法,让AI根据奖励模型进行自我改进。这就像是一个学生在做完练习题后,通过老师的反馈不断调整答题方式,以提高考试成绩。PPO的作用是确保AI不会在优化过程中出现“过度自信”或“过度谨慎”的问题,而是以一种稳定的方式逐步提升回答质量。
三、优化策略:如何让Deepseek运行得更快?
AI模型的训练需要大量的计算资源,单个GPU(图形处理单元)往往难以独自完成所有计算任务,因此需要多个GPU协同工作。而Deepseek在训练过程中可能使用了张量并行(Tensor Parallelism)和流水线并行(Pipeline Parallelism)两种方式,让多个GPU像流水线一样高效协作,从而加快训练速度,同时降低显存的占用。
1、 张量并行(Tensor Parallelism):把“大任务”拆成“小任务”,让多个GPU同时运算
可以把AI的计算过程想象成一个大厨在做一顿复杂的大餐,比如烹饪一道豪华的法式大餐,涉及到切菜、煎牛排、煮汤、摆盘等多个步骤。如果只有一位厨师,他需要从头到尾完成所有工序,可能会非常耗时。但如果我们把不同的任务拆分给不同的厨师,比如一个人专门负责切菜,一个人负责煎牛排,一个人负责煮汤,那么整个过程就会快得多。
在AI模型训练中,张量并行的原理类似——它把一个复杂的计算任务拆成更小的部分,并分配给不同的GPU,让它们同时计算。比如,在处理一批数据时,某个矩阵计算可能需要几十亿次乘法运算,单个GPU执行会非常吃力,而张量并行可以让多个GPU各自计算一部分,最终再把结果汇总起来,从而大幅提高计算效率。
2、 流水线并行(Pipeline Parallelism):让计算像工厂流水线一样高效
如果说张量并行是把一个任务拆分成多个小任务,那么流水线并行则是把整个训练过程拆分成多个阶段,每个GPU专门负责一个阶段,就像工厂里的流水线一样。
举个例子,想象一下汽车制造工厂,每辆汽车都需要经历多个组装阶段,比如焊接、喷漆、安装发动机、安装座椅等。如果让一名工人独立完成整辆车的制造,效率会很低,但如果不同的工人分别负责不同的环节,流水线式作业,那么一辆车可以在多个工人手中同时进行不同阶段的生产,大大加快了生产速度。
同样的道理,在AI训练过程中,模型的不同层可以被分配到不同的GPU,每个GPU处理自己的部分,完成后交给下一个GPU,这样数据像工厂流水线上的汽车一样不断向前流动,从而提高吞吐量,减少单个GPU的内存占用。这种方式特别适用于那些超大规模的AI模型,因为它可以显著降低训练时的显存压力,避免GPU因内存不足而崩溃。
但是,即使使用了并行计算和动态计算图,模型仍然可能会非常庞大,占用大量存储和计算资源。为了让AI在推理时更加轻量化,Deepseek采用了量化(Quantization)和剪枝(Pruning)技术,让模型在不损失太多准确性的前提下,大幅减少计算复杂度。
1、 量化:用更小存储单位减少计算量
- AI模型的计算过程涉及大量的浮点数运算,而Deepseek可能会使用低比特量化(如INT8、FP16、BF16),将原本需要高精度计算的参数转换为更低精度的数据格式,就像是把“高清图片”转换成“压缩图片”——虽然占用空间减少了,但仍能保持清晰度。
2、剪枝(Pruning):移除“无用”的神经元
AI模型中有成千上万个神经元,但并不是每一个神经元都在实际计算中发挥关键作用。Deepseek可能会使用结构化剪枝(Structured Pruning),就像修剪树枝一样,把那些影响不大的神经元“剪掉”,让模型更加精简,同时提高运行效率。
从数据结果来看,DeepSeek的预训练阶段引入了多模态对比学习策略,将文本、知识图谱、数学符号等不同模态信息统一编码到共享语义空间。这种训练方式使模型在STEM领域问题求解能力较纯文本训练的GPT-4提升58%,特别是在量子力学公式推导任务中,准确率从GPT-4的72%跃升至89%。监督微调阶段,DeepSeek采用了三维奖励建模框架。不同于GPT系列基于人工标注的偏好排序,DeepSeek同时考虑答案正确性(正确维度)、推理过程完整性(过程维度)和知识引用规范性(规范维度),构建了包含1200万条多维度标注数据的训练集。这种多维度监督使模型在复杂决策任务中的可解释性提升75%。
持续学习机制方面,DeepSeek实现了参数隔离的模块化更新。通过将模型划分为200个功能模块,每个模块配备独立的灾难性遗忘防护机制,使得模型在增量学习新知识时,旧任务性能衰减控制在3%以内,而GPT系列同类场景下的性能衰减高达15-20%。
四、对比GPT:DeepSeek实现了哪些优化?
虽然我们例举了一些DeepSeek的数据优势,但是这本质依然是来自GPT的抛砖引玉。 目前来看,DeepSeek的技术路线更聚焦垂直场景深度优化与计算效率的极致探索,而GPT系列侧重通用智能的边界拓展。
动态稀疏注意力机制: DeepSeek采用可学习的注意力门控网络,在推理时动态关闭部分注意力头(约35%),显著降低计算量。例如,在1024层架构中,实际激活参数仅为稠密模型的65%,推理速度提升2.3倍,同时显存占用减少30%。相比之下,GPT-4的MoE架构依赖固定的专家路由策略,无法动态适应任务复杂度。
层次化参数共享: 模型前600层共享基础语法参数,中间300层分组共享领域知识参数,顶层124层独立优化任务参数。这种分层策略使参数复用率提升40%,在长文档处理任务中(如法律合同分析),响应时间缩短45%。
自适应计算深度: 根据输入复杂度动态调整计算层数(简单token仅需200层,复杂语义需1024层),使平均推理能耗降低58%。例如,在客服对话场景中,DeepSeek的每千次调用成本仅为GPT-4的62%。
STEM领域优势: 通过多模态对比学习(融合知识图谱、数学符号、化学式),DeepSeek在量子力学公式推导任务中准确率达89%(GPT-4为72%),数学竞赛题(如IMO)解题能力提升50%。
实时知识更新能力: 分布式神经记忆矩阵支持分钟级知识注入(如更新新冠诊疗指南),而GPT需全模型微调。测试显示,DeepSeek知识更新效率较GPT高200倍,且旧知识遗忘率低于3%。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。