1、什么是工作流?
简单来说,工作流就是一套“流水线操作指南”。
就像我们做菜的流程一样:
先洗菜→切菜→开火→倒油→炒菜→放调料→出锅
每一步按顺序来,最后菜出锅不好吃是哪一步出了问题,今天的菜非常好吃,又是哪一步进行了优化,明明白白。
这就是工作流的魅力——把复杂的事情拆成简单的小步骤,让不同的人或者工具都能高效配合。
下面是一个简单的工作流示例
实现功能:“大模型节点”获取“开始节点”传过来的用户信息,处理后,通过“结束节点”返回给用户。
2、为什么现在已经有这么多厉害的大模型了,还要有工作流?
大模型就像个“超级大脑”,超能干!回答问题、生成文本、翻译语言,这些都不在话下。
而工作流就像一个“指挥官”,遇到复杂任务时,它能把大模型的能力和任务的各个环节串起来,让整个过程井井有条、高效配合,最后达到我们想要的效果。
特别是那些重复性的工作,工作流更能发挥作用,一键发送指令,完全不用每次都重复1234步。
下面我们就来亲自体验一下工作流的神奇魅力!
3、手把手创建工作流(以coze为例)
3.1、 登录扣子(coze)官网
https://www.coze.cn/
3.2、新建工作流
步骤:【工作空间】->【资源库】->【+资源】->【工作流】
设置工作流名称和描述
注意:工作流名称只允许字母、数字和下划线,并以字母开头
点击【确认】创建
默认只有“开始”和“结束”两个节点
3.3、添加节点
coze工作流提供了很多节点,最常用的有大模型、图像生成、文本处理等,下面简单介绍2个节点。
大模型节点
功能:等同于我们平时使用的豆包、DeepSeek、Kimi、chatGPT等,你可以在【模型】部分选择你想用的大模型,coze为我们内置了很多,最新的DeepSeek。
输入: 输入给大模型的文字,就像我们平时用大模型app中输入的问题一样
系统提示词: 这里是我们向大模型提的要求,比如我们希望它针对我们的问题做哪些处理和解答,希望它输出什么格式等等
用户提示词: 让大模型根据提示词来回答,这里经常就是{input}
图像生成节点
功能: AI绘图,相当于我们平时用的AI绘图工具,比如即梦、通义万相等等
模型: 选择不同的绘图模型,生成效果有些微区别,看个人需求
比例: 生成图片的大小比例
输入: 用于生成图片的提示词来源
正向提示词: 对生成图片的一些要求和限制,可直接引用输入
负向提示词: 用于告诉AI在生成图像时要避免包含某些特定元素或特征
3.4、添加插件
coze还提供了功能多样的插件,就像你的武器库一样,有官方的,有高手们发布的,总有一款适合你。下面介绍2个插件。
语音合成插件
功能: 把文字转换成音频
输入: text->需要朗读的文字;其他是一些非必填的朗读的语音、语速、音量等
图片转文字
功能: 识别图片中的文字
输入: 选择的图片
我们就先这样简单地搭建一个工作流。
3.5、试运行
试运行看看我们的工作流能否按要求完成任务
可以看到我们的几个功能点都正常实现,这样就是没问题的工作流了,点击右上角【发布】就可以使用了。
coze中还有很多其他的节点和插件,你的需求几乎都能满足,大家赶紧试试吧!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。