AI智能体|扣子(Coze)搭建【爬取指定网页信息进行总结整理】工作流

大家好,我是偶然,AI洞察,AI智能体,AI工作流分享

在开始今天的干货之前,先容我讲一下这几天爆火的 GPT—4o 支持图片输出的观点看法。

当然和我们今天要学习的内容还是有点关系滴(不是跟风输出几张图)。

前几天 GPT-4o 宣布正式支持图片输出,受到了大家热情的讨论,刷屏了朋友圈,也刷屏了我的公众号

说实话,刚开始我觉得没什么奇怪的,毕竟现在市面上的生图模型多的去了,这有啥好稀奇?

后来我去看了一些博主对这个模型的测评,发现除了效果太强以外,对我们还有很大的影响。

我认为最大的影响就一个,就是我们做的大多数 AI 项目都活不了几个月。

我为什么这么说?给你讲个故事你就懂了。

去年,我刚毕业那会,我有个玩的比较好的同学,不想干软件,想去干干硬件,学学嵌入式啥的,具体我也不怎么记得了。

后来它苦修了好长时间,终于有点眉目了,这时候 TM 的 GPT—4.0 来了。

他和我说,努力学半年,不如 AI 迭代一个月。

你可能要说,这不是正常吗?你讲了和没讲有什么区别?

其实你把我这朋友学的方向换成绘画你就懂了,学完 SD MJ confyui 刚刚想捞一点钱,GPT 直接重拳出击。

Image

虽然我没深耕过 AI 绘画,但我学过一点 MJ 和 SD 我觉得这波还是影响很大的。

其实我想说的是,无论是搞项目还是创业,都要避开大厂的主战场。

那这个怎么理解呢?给你举两个例子你马上就理解了。

GPT 3.5 刚爆火的时候,你发现不能语音输入,好,这时候你想整个能语音对话的大模型,你开始投钱,找人开干。

勤勤恳恳干了一段时间,上线了,积累了一点用户,刚开始赚一点,然后这时候大厂的也发现了这个情况,它也来跟你争。

不出几个月,你马上败下阵来,为什么这样说?

你想想,它们的显卡多少万张,它们肯给人才开的钱,你大概率给的不了,它们大把钱来烧。

用之前爆火的小明梗来说就是,给你排个排位第一怎么玩?给你玩到死,运营到死。回答我?你怎么玩?

其实换在 AI 绘画也一样,学那么多工作流,大厂的一次迭代可能就付诸东流了。

Image

那这个有什么办法呢?

其实办法有两个,一个叫“快进快出”,一个叫“错位竞争”。

快进快出的意思就是,大厂还没搞这方面,但这是它们的主战场,你趁别人没整会之前先学会,快速捞一波就走。

比如之前大家不会绘画工作流,然后大模型效果又很一般,这时候你快速学会绘画工作流,立马去变现,等大厂介入的时候,你再走就行。

说白了,就是追个风口,捞个快钱。

错位竞争的意思就是,大厂干的是 AI ,你直接干 AI+ 。

比如当初的互联网,大佬们搞得都是纯互联网,那这时候就可以互联网+实体,互联网+电商等等,用这种方式来避免直接竞争。

Image

说完最近 GPT-4o 给我们带来的影响后,就要开始今天的干货内容了。

需求分析

无论什么行业,每天都有很多新的行业资讯。

我们要是不想落后,我们就要知道新的信息,如果你有信息差,那你赢的概率就大一点,就像刚才说的 GPT-4o。

当然,它的作用不止这个,很多好处你都懂得。

但我们为什么要用智能体呢?我直接开网页看不就行了?

刚开始我也这么觉得,然后发现我很多时候都是懒得打开看,有时候感觉内容太多了,看几句话就关了,懒得看完一整篇。

而且那些行业信息资讯都是很多篇并不是只有一篇。

比如 AI 的行业每日资讯,都是有好几篇,每篇的内容都很多,但关键的信息可能就几句话。

如果刚好你想看的行业资讯信息每天都更新好几篇,可能单单打开那么多链接,你都觉得烦,更别说看完几篇了。

那么这个时候我们可以使用智能体直接对某个行业的当日新资讯,用 AI 学习同时进行重点总结。

这样可以省去我们很多阅读时间,同时还不会错过重点信息。

Image

工作流分析

大致的流程如下。

Image

整体的 Coze 工作流如下。

Image

保姆级工作流教程

这次工作流,我采用的是东方财富网(https://data.eastmoney.com/report/industry.jshtml),炒股的小伙伴应该都知道这个网站。

这个网站每天都会更新很多行业的最新研究报告。

比如刚更新的智谱 AutoGLM 沉思版,这里也有对应的经济分析报告。

Image

好了接下来直接讲教程。

第一步,开始节点

这一步不用做什么,只需要把输入的这个变量值必填这个选项去掉就行。

Image

第二步,爬取数据节点(网页解析器)

这一步作用就是爬取网页上的信息, url 的话就是我们输入的网页网址了,然后这里的 parser 的话可以理解为网页上那一块内容的信息解析爬取。

Image

由于我们需要查看的资讯信息链接,来源于这个表格的每一行,那么我们就要获取表格,需要爬取数据的这一行代码是什么,把它作为 parser 的值

我们通过 F12 查看这个位置,可以看到是<table class="table-model"><tbody><tr>,这个就是 parser 的值。

Image

(这一步对没代码基础的人来说比较麻烦,如果觉得我没讲懂,直接下面留言,我解答)

第三步,循环节点

这个节点的作用就是循环解析表格中每一行的数据,我这里为了省钱,省点 token 我直接循环一次,解析一个网页总结就行。

由于这个节点分为了两部分,我对它们分别进行讲解。

循环体包含了大模型,代码,终止循环,这个大模型的作用就是解析 html 网页。

代码的话就是将解析的内容转化为 JSON 格式,终止循环是因为我想省 token 。

大模型的变量值的输入来源为:循环 htmlContent 。

Image

系统提示词
# 角色
你是一位专业的HTML格式解析专家,能够精准目高效地根据用户播令,从HTHL代码中解析出对应的数掘。你对HTML的各种标签、居性和络构了如指学,能够热练运用专业知识解决各类解析问题
# 技能
### 技能 1: 解析指定数据
1.当用户给出具体指令,要求从HTML代码中解析特定数据时,仔绍分析指令内容。
2.准确识别HTML代码中与指令相关的部分,运用你的专业知识进行数据提取。
3.将解析出的数据清晰、准确地星现给用户。
## 限制:
.只回等与HTML格式解析相关的内容,拒绝回答与该主题无关的话题。
-所输出的内容必须清晰明了,准确呈现解析出的数据。
确保解析过程严谨,数据来源为用户提供的HTML代码。

用户提示词
从{{input}}中第5个<td>解析出标题和链接,在每个链接前面拼上域名:https://data.eastmoney.com/,以json格式返回
{
"title":标题,
"url":链接
}

代码节点输出变量值 key0 变量类型是 Object 然后添加两个两个变量值,title 和 url 。

title 的话就是解析刚才表格某行信息资讯的标题名称,url 的话就是对应的链接。

对应代码
// 在这里,您可以通过 ‘params’  获取节点中的输入变量,并通过 'ret' 输出结果
// 'params' 和 'ret' 已经被正确地注入到环境中
// 下面是一个示例,获取节点输入中参数名为‘input’的值:
// const input = params.input; 
// 下面是一个示例,输出一个包含多种数据类型的 'ret' 对象:
// const ret = { "name": ‘小明’, "hobbies": [“看书”, “旅游”] };

async function main({ params }: Args): Promise<Output> {
    // 构建输出对象
    const ret = {
        "key0": JSON.parse(params.input)
    };

    return ret;
}

第四步,爬取数据2

这一步就是由于刚才我们打开了那些表格上面的信息资讯链接,但是链接里面的内容我们还没爬取,所以需要这一步。

比如这里我打开了刚才表格里面的青岛啤酒,那这个节点就需要对这个网页的内容爬取。

Image

这一步的作用就是把里面的资讯爬取下来,让大模型总结重点,最后发给我们。

Image

第五步,总结

这一步比较简单,作用就是把刚刚爬取的内容进行总结,直接用大模型总结就行了。

Image

第六步,结束

这一步我们需要接受大模型传来的内容总结,就可以了。

Image

总结

看着上面有六步,但其实重要的就第二,第三步,如果你把第二,第三步弄明白了,后面那些都可以根据自己的情况调整。

比如你想把总结的内容生成思维导图,那你就在后面加个相应的节点。

这里我是用东方财富网做的演示,你可以根据自己想爬取的网页进行调整,只需要修改一下第二步,第三步就行了。

比如你想爬取 AI 行业资讯的网址,你就把第二,第三步的值改改就行了。

如果你不理解,可以留言,看到了我就会回答,或者你加我也行。

感谢你的耐心。

如果看完喜欢,请帮忙转发分享一下,你的点赞转发,就是我更新下去的动力!

图片

👍

教你用DeepSeek做个单词消消乐游戏,背单词如喝水

AI智能体|扣子(Coze)搭建【自动生成小红书爆款笔记】工作流保姆级教学

AI智能体|扣子(Coze)搭建【爆款文案改写】工作流小白教程【手把手教会】

AI智能体|扣子(Coze)搭建工作流小白教程【手把手教会】

零基础Coze搭建AI智能体,王奶奶也能学会的保姆级教程(新手必备)

一文读懂什么是MCP,RAG,Agent,以及它们之间的关系(小白必备)

教你一套从0到1搭建商用AI Agent(智能体)的系统方法论

👇点击关注,每篇文章能给你带来一定的收获👇

<think>好的,我现在需要回答用户关于扣子Coze智能体工作流的介绍及原理的问题。首先,我需要回顾用户提供的系统级指令和已有的引用内容,确保回答符合格式和内容要求。 用户要求回答结构清晰,分步骤说明,并且引用相关的站内引用。根据用户提供的引用[1]、[2]、[3],我需要整合这些信息来构建答案。 首先,扣子智能体工作流的定义。引用[1]提到工作流通过部署编排固化流程,提升输出的准确性和可靠性。这可以作为定义部分的基础。需要解释工作流的基本概念,以及它在智能体中的作用。 接下来是原理部分。根据引用[3],动态学习能力是关键,智能体需要预训练和迁移能力。而引用[1]提到固化流程,可能涉及到任务分解和模块化处理。结合这些,可以分解出原理的三个部分:任务分解、模块化处理、动态学习能力。 然后是核心优势,引用[1]提到了准确性和可靠性提升,以及自动化效率。引用[2]可能涉及设计模式,但用户没有直接相关的内容,所以可能需要专注于已有的三个引用点。 应用场景方面,引用[1]和[3]提到了客服、数据处理、知识管理等,需要具体举例说明。 优缺点部分,引用[1]提到了优缺点,需要分别列出,比如优点如可控性强,缺点如灵活性受限。 最后,生成相关问题,根据用户提供的示例,需要设计三个相关问题,涉及设计要素、对比传统方法、应用案例等。 在写作过程中,要确保使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前内容可能不涉及数学公式,所以可能不需要。同时,引用标识要自然添加在相关段落末尾。 现在需要组织这些信息,确保每个部分逻辑连贯,符合用户的要求,并且正确引用来源。例如,在解释动态学习能力时,引用[3],在任务分解时引用[1]等。 检查是否有遗漏的信息,比如引用[2]提到的设计模式,但用户的问题更关注介绍和原理,可能暂时不需要深入设计模式,除非有直接关联的内容。但用户提供的引用[2]中的相关论文可能作为扩展,但用户的问题可能不需要,所以可能不提及。 最后,确保回答结构清晰,分点说明,每个部分有引用标识,并且生成的相关问题符合要求。</think>### 扣子Coze智能体工作流介绍及原理 #### 1. **工作流定义** 扣子智能体工作流是一种通过**流程编排与模块化设计**,将复杂任务分解为有序步骤的自动化机制。其核心目标是**提升模型输出的准确性和可靠性**,同时固化可复用的业务逻辑[^1]。例如,在客服场景中,工作流可将用户问题拆解为“意图识别→知识库查询→答案生成→反馈优化”的标准化流程。 #### 2. **核心原理** - **任务分解与编排** 将复杂任务拆解为原子化子任务(如数据清洗、逻辑判断、外部API调用),通过**有向无环图(DAG)**定义执行顺序与依赖关系。例如,处理用户请求时可能遵循: $$ \text{输入解析} \rightarrow \text{权限验证} \rightarrow \text{多源数据检索} \rightarrow \text{结果聚合} $$ - **模块化处理单元** 每个子任务对应独立的功能模块,支持**预训练模型微调**、**规则引擎**或**第三方服务集成**。模块间通过标准化接口传递数据,降低系统耦合度[^1]。 - **动态学习能力** 基于大规模预训练语言模型(LLMs)的迁移学习能力,工作流可通过持续交互数据优化模块参数,实现**闭环迭代**。例如,根据用户反馈自动调整答案生成策略[^3]。 #### 3. **核心优势** | 特性 | 说明 | |---------------|-----------------------------| | 准确性提升 | 通过固化校验规则减少模型幻觉风险 | | 可解释性增强 | 每个步骤的输出可追溯调试 | | 效率优化 | 并行执行非依赖任务,缩短响应延迟 | #### 4. **典型应用场景** - **智能客服**:多轮对话状态机管理 (例:退货流程 → 订单验证→ 物流状态确认→补偿方案生成) - **数据分析**:ETL管道自动化(数据抽取→转换→可视化) - **知识管理**:文档解析→实体抽取→知识图谱更新 #### 5. **优缺点分析** - **优点** - 流程可控性强,符合企业合规要求 - 支持混合架构(AI模型+规则引擎) - **挑战** - 过度固化可能导致灵活性下降 - 复杂工作流调试成本较高[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值