对目标的运动特征,目前大部分算法都基于运动大的区域为目标的可能性大这一假设,但在实际情况中,运动大的区域并不一定有较大的概率为目标区域,比如跟拍目标或者相机抖动,而导致背景剧烈的变化,这样会导致目标分割或者检测的失败。本博客给出两种方法可以有效地解决此类情况:
(1)在文献[1]中的方法,即通过运动的大小与运动方向的差异共同得到目标的运动边缘。具体描述如下,先计算相邻两帧之间的光流矢量值,计算得到每个像素点的运动大小。但由于相机的抖动或者跟拍目标,会导致背景产生剧烈的运动,此时仅利用运动幅值大小,会导致背景被误判为前景,很难分割出正确的前景目标与背景区域。由此,考虑利用运动矢量之间的夹角来区分出目标与背景,得到运动边缘大小。同时结合像素的运动大小以及运动的方向得到目标的运动边缘特征,可以得到目标的运动边缘,这样的运动边缘具有较好的鲁棒性。从图中(f)可以看出,这种利用目标运动获得的边缘信息比较可靠的,能够较有效的去除背景的干扰等。具体公式可以参考文献[1].
图1:目标运动边缘的提取。其中,(a)为原始视频帧,(b)为相邻两帧之间的光流矢量图,(c)是光流幅值大小得到的运动边缘,(d)是利用光流方向之间的夹角得到的运动边缘,(e)是结合运动大小和运动方向的运动目标边缘图,(f)由(e)阈值化在原视频帧中的显示结果。
(2)以cheng等人[2]提出的基于全局区域颜色对比计算图像显著性的方法作为参照,对光流场进行类似全局运动对比的计算方法,可以得到区域为目标的概率大小,较好的利用了目标的运动特征。
[1] Papazoglou A, Ferrari V. Fast object segmentation in unconstrained video[C]//Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE, 2013: 1777-1784.
[2] Cheng M, Mitra N J, Huang X, et al. Global contrast based salient region detection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2015, 37(3): 569-582