【Windows11 NVIDIA GeForce RTX 3080 Laptop GPU 安装GPU版本的Pytorch方法】

Windows11 NVIDIA GeForce RTX 3080 Laptop GPU 安装GPU版本的Pytorch方法

一、查看显卡驱动及安装对应的CUDA版本方法

  1. 查看笔记本显卡型号
    查找NVIDIA Control Panel 即可查看

    在这里插入图片描述

  2. 查看显卡版本、驱动及对应的CUDA版本
    在命令行中或者Anaconda Prompt中输入nvidia-smi

    在这里插入图片描述
    这里可以看到可以安装的驱动版本以及对应的CUDA版本号。
    参考:(cuda 驱动对照表)https://blog.csdn.net/qq_41946216/article/details/129476960
    根据Driver Version: 512.78, 也可以选择其他版本。例:Driver Version: 512.78 >= 511.65,可以向下兼容,所以除了可以安装CUDA11.6版本以外,低版本的CUDA也可以安装,本文以CUDA11.6为例。

二、确定CUDA、cuDNN、Python、Pytorch、Torchvision、Torchaudio对应版本方法及安装

确定顺序:CUDA == 11.6 => cuDNN == 8.9.4 => Python == 3.10 => Torch == 1.12.1+cu116, Torchvision == 0.13.1+cu116, Torchaudio == 0.12.1

三、CUDA安装及确认

  1. 下载安装CUDA
    下载地址:https://developer.nvidia.com/cuda-11-6-0-download-archive
    在这里插入图片描述

    • 双击CUDA安装包: cuda_11.6.0_511.23_windows.exe
    • 按照默认路径安装 -> OK -> 同意并继续 -> 精简安装 -> 完成
  2. 配置CUDA环境变量

    • 右键Windows -> System -> Advanced system settings -> Environment Variables
    • System variables下编辑添加:
      CUDA_PATH 安装路径\NVIDIA GPU Computing Toolkit\CUDA\v11.6
      CUDA_PATH_V11_6 安装路径\NVIDIA GPU Computing Toolkit\CUDA\v11.6
    • 如果安装多个CUDA版本的话,在安装路径\NVIDIA GPU Computing Toolkit\CUDA\下会有另外的文件夹,例如v11.5,使用不同版本的话,更新环境变量即可
    • 重启电脑
  3. 确认当前CUDA版本
    在命令行中或者Anaconda Prompt中输入nvcc -V, 确认安装成功。

    在这里插入图片描述

四、cuDNN安装及确认

  1. cuDNN版本查询及下载
    下载地址:https://developer.nvidia.com/rdp/cudnn-download

    • 注册账号、登录、同意 License Agreement
    • 下载 _for CUDA 11.x_版本
      在这里插入图片描述
  2. 安装cuDNN

    • 解压文件夹 -> 复制 bin, include, lib 三个文件夹到CUDA v11.6的安装目录下。
  3. 配置cuDNN环境变量

    • 同CUDA环境变量配置方法,找到 Environment Variables
    • CUDA安装过程中自动配置了一个环境变量,名为Path,双击
      在这里插入图片描述
    • 添加四个路径,与CUDA路径一致
      在这里插入图片描述
  4. 检查cuDNN是否安装成功

    • 打开命令行:Win + R : cmd

    • 在CUDA安装路径下:找到 deviceQuery.exe
      输入:deviceQuery.exe
      Result = PASS

      在这里插入图片描述
      在这里插入图片描述

    • 运行 bandwidthTest.exe
      输入:bandwidthTest.exe
      Result = PASS
      在这里插入图片描述

    • 两者全部PASS表示cuDNN安装成功

五、安装GPU版本的Pytorch

  1. 在Anaconda Prompt下创建虚拟环境并进入
    conda create -n [Virtual Name] python=[Version Number]
    conda activate [Virtual Name]

  2. 确定Pytorch版本
    确认地址:https://pytorch.org/get-started/previous-versions/
    在这里插入图片描述
    确定版本:Torch == 1.12.1+cu116, Torchvision == 0.13.1+cu116, Torchaudio == 0.12.1

  3. 安装Pytorch

    • 在虚拟环境中下载输入命令
      pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116

    • 如果正常安装则安装完成,但如果失败查找不到文件,可能是Python版本不对

      • 进入下载地址:https://download.pytorch.org/whl/cu116 查找我们要下载的文件
        在这里插入图片描述
        在这里插入图片描述
      • 注意:这里的cu116是CUDA11.6的缩写,cpXXX指的是Python版本,这里对应的版本有3.73.83.93.10,所以查看Python版本
      • 卸载原来的Python版本并安装对应版本
        pip uninstall python== xxxxxx
        pip install python== xxxxxx
      • 再次安装Pytroch
  4. 验证是Pytorch GPU版本是否安装成功

    • 进入虚拟环境
    • 进入Python环境 python
    • 输入:
      import torch
      torch.cuda.is_available()
    • 输出:True
      在这里插入图片描述
    • GPU版本安装成功。
### 配置 NVIDIA GeForce RTX 3050 Ti Laptop GPU 使用 CUDA 12.1 为了使 NVIDIA GeForce RTX 3050 Ti Laptop GPU 能够顺利运行基于 CUDA 的应用程序,特别是当目标环境为 PyTorch 并且需要兼容特定版本CUDACUDA 12.1 时,可以遵循如下指南来完成配置。 #### 环境准备 确认操作系统已更新至最新状态,并确保拥有管理员权限以便于后续操作。对于 Windows 用户来说,推荐先下载并安装最新的显卡驱动程序以获得最佳性能和支持[^1]。 #### 下载与安装 CUDA Toolkit 12.1 访问[NVIDIA 开发者官网](https://developer.nvidia.com/cuda-downloads),选择适用于当前系统的 CUDA 12.1 版本进行下载。注意,在此过程中应仔细核对所选组件是否满足个人需求以及硬件条件的要求。安装完成后需重启计算机使得更改生效[^2]。 #### 设置环境变量 为了让系统能够识别新安装CUDA 工具包路径,需要调整 `PATH` 和其他必要的环境变量。具体做法是在命令提示符下执行以下指令: ```bash setx PATH "%PATH%;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin" ``` 此外还需设置 `CUDA_HOME` 或类似的自定义变量指向上述目录位置,这有助于某些依赖项正确找到所需的库文件。 #### 安装匹配版本的 cuDNN 库 cuDNN 是由 NVIDIA 提供的一个用于加速深度学习应用开发的重要工具集。根据官方文档说明,应当挑选对应于 CUDA 12.1 的 cuDNN 发行版加以部署。同样地,解压后记得把其 bin 文件夹加入到全局搜索路径当中去。 #### 测试安装成果 最后一步就是验证整个流程无误。可以通过编写简单的 Python 脚本来调用 torch.cuda.is_available() 函数查看能否成功检测到 GPU 设备;或者尝试编译一段基础 C++ 代码片段测试 nvcc 编译器功能正常与否。 ```python import torch print(torch.cuda.is_available()) ``` 如果一切顺利的话,则表明已经完成了针对 NVIDIA GeForce RTX 3050 Ti Laptop GPUCUDA 12.1 版本配置工作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值