02 GPU深度学习环境搭建:Win11+CUDA 11.7+Pytorch1.12.1+Anaconda

       

目录

 1、查看设备显卡

2、查看NVIDIA版本

2.1 显卡驱动和cuda版本信息

2.2 CUDA 版本选择

3、CUDA的下载与安装

3.1 CUDA 下载

3.2. 安装CUDA

3.1 选择程序安装

 3.2 选择程临时解压路径

3.3 系统检查完成后点击同意并继续

 3.4 选择自定义安装

 3.5 查看环境变量

​编辑

3.6 查看版本

4、 安装cuDANN

5、 选择 CUDA 对应的Pytorch、Pytorch 对应的Python

6.安装Anaconda 或 Miniconda

6.1 安裝Anaconda3(了解)

6.2 安装Miniconda(推荐)

7.安装虚拟环境

7.1打开这个Anaconda Prompt应用

7.2 创建虚拟环境

​编辑

7.3 激活环境

7.4 配置清华镜像源(此步可省略)

8、安装pytorch

8.1 进入官网获取安装命令

8.2 进入虚拟环境,执行安装

8、验证安装是否成功

9、环境迁移(了解)

9.1 查看项目所安装的第三方库

9.2 生成依赖环境文件

9.3 环境迁移


       此案例是以win11环境的gpu即nvidia为案例,进行深度学习环境搭建,选择工具及版本分别为CUDA 11.7、Pytouch1.12.1、Miniconda3_py38(含Python3.8)

 1、查看设备显卡

    我的电脑右键-管理

     查看显卡是否是英伟达,如果是英伟达,则可以进行安装Cuda,否则不能安装Cuda。

2、查看NVIDIA版本

2.1 显卡驱动和cuda版本信息

      win+r 进入命令行,输入cmd      

   

       在命令行中输入【nvidia-smi】可以当前显卡驱动版本和cuda版本。

      根据显示,电脑的显卡配置为NVIDIA,显卡驱动版本为:Driver Version: 527.47,CUDA 的版本为:CUDA  Version 12.0。因此能安装的Cuda最高版本是12.0,也可以安装12.0以下版本。

      查看显卡大小,可以通过任务管理器查看,到性能中找gpu,发现显卡大小是8G。

2.2 CUDA 版本选择

       根据显卡驱动 和 CUDA版本对应关系选择 CUDA

      上面显示显卡驱动版本为:Driver Version: 527.47,CUDA 的版本为:CUDA  Version 12.0,我们可以安装CUDA的12.0版本,也可以安装12.0以下版本。

      我们也可以根据下面的显卡驱动版本 和 CUDA  版本对应关系选择其他版本的 CUDA,因为 Driver Version: 527.47 >= 522.06(Windows驱动版本),所以向下兼容,可以使用 CUDA Version 11.7,此案例以 CUDA 11.7 版本为安装案例。

CUDA工具版本Linux驱动版本(x86/64)Windows驱动版本(x86/64)

CUDA 11.8 GA

>=520.61.05

>=522.06

CUDA 11.7 更新1

>=515.48.07

>=516.31

CUDA 11.7 GA

>=515.43.04

>=516.01

CUDA 11.6 更新2

>=510.47.03

>=511.65

CUDA 11.6 更新1

>=510.47.03

>=511.65

CUDA 11.6 GA

>=510.39.01

>=511.23

CUDA 11.5 更新2

>=495.29.05

>=496.13

CUDA 11.5 更新1

>=495.29.05

>=496.13

CUDA 11.5 GA

>=495.29.05

>=496.04

CUDA 11.4 更新4

>=470.82.01

>=472.50

CUDA 11.4 更新3

>=470.82.01

>=472.50

CUDA 11.4 更新2

>=470.57.02

>=471.41

CUDA 11.4 更新1

>=470.57.02

>=471.41

CUDA 11.4.0 GA

>=470.42.01

>=471.11

CUDA 11.3.1 更新1

>=465.19.01

>=465.89

CUDA 11.3.0 GA

>=465.19.01

>=465.89

CUDA 11.2.2 更新2

>=460.32.03

>=461.33

CUDA 11.2.1 更新1

>=460.32.03

>=461.09

CUDA 11.2.0 GA

>=460.27.03

>=460.82

CUDA 11.1.1 更新1

>=455.32

>=456.81

CUDA 11.1 GA

>=455.23

>=456.38

CUDA 11.0.3 更新1

>= 450.51.06

>= 451.82

CUDA 11.0.2 GA

>= 450.51.05

>= 451.48

CUDA 11.0.1 RC

>= 450.36.06

>= 451.22

CUDA 10.2.89

>= 440.33

>= 441.22

CUDA 10.1 (10.1.105发行版与更新)

>= 418.39

>= 418.96

CUDA 10.0.130

>= 410.48

>= 411.31

CUDA 9.2 (9.2.148 更新1)

>= 396.37

>= 398.26

CUDA 9.2 (9.2.88)

>= 396.26

>= 397.44

CUDA 9.1 (9.1.85)

>= 390.46

>= 391.29

CUDA 9.0 (9.0.76)

>= 384.81

>= 385.54

CUDA 8.0 (8.0.61 GA2)

>= 375.26

>= 376.51

CUDA 8.0 (8.0.44)

>= 367.48

>= 369.30

CUDA 7.5 (7.5.16)

>= 352.31

>= 353.66

CUDA 7.0 (7.0.28)

>= 346.46

>= 347.62

3、CUDA的下载与安装

3.1 CUDA 下载

3.2. 安装CUDA

3.1 选择程序安装

 3.2 选择程临时解压路径

       选择默认即可,安装过程中会使用临时解压路径(后面系统会自动删掉)。

3.3 系统检查完成后点击同意并继续

 3.4 选择自定义安装

       选择精简,这里建议默认安装,也可手动安装,但是要记得自己安装的位置,因为后面需要配置系统环境变量。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oB3QfHVD-1665490107623)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20221006162051844.png)]

 3.5 查看环境变量

      在计算机上点右键,打开属性->高级系统设置->环境变量,可以看到安装后,自动默认在系统中配置好  CUDA_PATH 和 CUDA_PATH_V11_7 环境变量(版本号对应用户所下载的版本号):

 

3.6 查看版本

      安装完毕在命令行输入 nvcc --version,可以看到我安装的是11.7。至此,CUDA的安装过程结束。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hxJP9Gyg-1665490107623)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20221006162540151.png)]

4、 安装cuDANN

      解压cuDANN的压缩包发现里面会有三个文件夹 bin,include,lib,将它们复制到cuda安装下面C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.17,这是默认的路径

在这里插入图片描述

      在路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\demo_suite中,用cmd运行bandwidthTest.exe和deviceQuery.exe,如果得到两个PASS就证明成功了,如图。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NfmKHKi5-1665490107626)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20221006163113441.png)]

5、 选择 CUDA 对应的Pytorch、Pytorch 对应的Python

       根据   CUDA 11.7 版本查看   Pytorch的对应版本为  12.1.1,再根据 Pytorch12.1.1版本查看Python对应的版本为  >=3.7 到 <=3.10 ,此处选择Python3.8案例。

6.安装Anaconda 或 Miniconda

     因安装 Anaconda 或 Miniconda可以使用多个Python版本的环境,此处安装Miniconda为案例,版本为Miniconda3-py38 4.9.2-Windows-x86 64.exe,其中Python版本为3.8

6.1 安裝Anaconda3(了解)

       不太推荐,占用内存比较大。

6.2 安装Miniconda(推荐)

7.安装虚拟环境

        Anaconda 或 Miniconda安装后会自带一个虚拟环境base,且这个环境自带python3.8。但为了进行环境隔离,一般会创建新的虚拟环境。

7.1打开这个Anaconda Prompt应用

      进入之后是以(base)开头

7.2 创建虚拟环境

      执行:conda create -n pytorch python=3.8.5

7.3 激活环境

      执行:conda activate pytorch

      激活后会自动进入所创建的虚拟环境,可以在这个环境中进行各种库的安装与使用。

7.4 配置清华镜像源(此步可省略)

此处详细见 Miniconda的下载安装和配置详解--配置镜像步骤

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
conda config --set ssl_verify false

8、安装pytorch

8.1 进入官网获取安装命令

8.2 进入虚拟环境,执行安装

      # conda active envName,如:conda active pytorch

      如果不使用虚拟环境安装则此步骤可以省略

安装方式一(不推荐):
  • 获取对应pytorch安装命令

  • 打开 Anaconda Prompt,执行 conda activate pytorch 进入虚拟环境pytorch

  • 执行命令:conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia ,执行此命令是下载最新版本 pytorch torchvision torchaudio
  • 注意:如果使用配置的清华镜像源,则需去掉 -c pytorch 和 -c nvidia ,否则会强制从官网下载会比较慢 

安装方式二(推荐):
  • 根据需要按版本选择(pytorch版本见上面 4、选择 CUDA 对应的Pytorch、Pytorch 对应的Python)
  • 再根据 pytorch 版本 和 cuda版本确定 wheel 位置

  •   选择根据cuda版本找到安装命令
  •  打开 Anaconda Prompt,执行 conda activate pytorch 进入虚拟环境pytorch

  • 根据 pytorch 版本 和 cuda版本确定 wheel 位置

  •   选择根据cuda版本找到安装命令
  •  打开 Anaconda Prompt,执行 conda activate pytorch 进入虚拟环境pytorch

  •  执行命令进行安装

 

安装方式三:(强烈推荐)

    01选择pytorch 

    02选择torchvision

    03选择torchvision 

        其中 cu117 代表 cuda11.7,cp38 表示 python版本为 3.8 

  •  执行命令安装:
  •  打开 Anaconda Prompt,执行 conda activate pytorch 进入虚拟环境pytorch

  • 执行命令安装

          其他两个安装相同方式安装。

8、验证安装是否成功

依次输入:

python

import torch

print(torch.__version__)

print(torch.cuda.is_available())

         当显示为True时,表示安装pytorch成功。

=========================================================================

以下为了解内容

9、环境迁移(了解)

        开发新项目三时,会用到多python独立环境,不同环境下安装相同的模块的情况,无需重新下载安装,利用pip freeze命令对之前安装好的环境进行迁移。

9.1 查看项目所安装的第三方库

      进入安装目录,如虚拟环境 conda activate pytorch,输入pip freeze ,可查看项目所安装的所有第三方库。

9.2 生成依赖环境文件

      输入pip freeze > requirements.txt,可在工程目录下生成requirements.txt文件,里面记录了该工程的所有依赖包以及对应的版本号。

9.3 环境迁移

       在新环境进行环境迁移,执行 :

pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/,即可自动安装所有依赖 (requirements.txt文件必要时需要带上路径)

评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值