目录
5、 选择 CUDA 对应的Pytorch、Pytorch 对应的Python
此案例是以win11环境的gpu即nvidia为案例,进行深度学习环境搭建,选择工具及版本分别为CUDA 11.7、Pytouch1.12.1、Miniconda3_py38(含Python3.8)
1、查看设备显卡
我的电脑右键-管理
查看显卡是否是英伟达,如果是英伟达,则可以进行安装Cuda,否则不能安装Cuda。
2、查看NVIDIA版本
2.1 显卡驱动和cuda版本信息
win+r 进入命令行,输入cmd
在命令行中输入【nvidia-smi】可以当前显卡驱动版本和cuda版本。
根据显示,电脑的显卡配置为NVIDIA,显卡驱动版本为:Driver Version: 527.47,CUDA 的版本为:CUDA Version 12.0。因此能安装的Cuda最高版本是12.0,也可以安装12.0以下版本。
查看显卡大小,可以通过任务管理器查看,到性能中找gpu,发现显卡大小是8G。
2.2 CUDA 版本选择
根据显卡驱动 和 CUDA版本对应关系选择 CUDA
上面显示显卡驱动版本为:Driver Version: 527.47,CUDA 的版本为:CUDA Version 12.0,我们可以安装CUDA的12.0版本,也可以安装12.0以下版本。
我们也可以根据下面的显卡驱动版本 和 CUDA 版本对应关系选择其他版本的 CUDA,因为 Driver Version: 527.47 >= 522.06(Windows驱动版本),所以向下兼容,可以使用 CUDA Version 11.7,此案例以 CUDA 11.7 版本为安装案例。
CUDA工具版本 | Linux驱动版本(x86/64) | Windows驱动版本(x86/64) |
---|---|---|
CUDA 11.8 GA | >=520.61.05 | >=522.06 |
CUDA 11.7 更新1 | >=515.48.07 | >=516.31 |
CUDA 11.7 GA | >=515.43.04 | >=516.01 |
CUDA 11.6 更新2 | >=510.47.03 | >=511.65 |
CUDA 11.6 更新1 | >=510.47.03 | >=511.65 |
CUDA 11.6 GA | >=510.39.01 | >=511.23 |
CUDA 11.5 更新2 | >=495.29.05 | >=496.13 |
CUDA 11.5 更新1 | >=495.29.05 | >=496.13 |
CUDA 11.5 GA | >=495.29.05 | >=496.04 |
CUDA 11.4 更新4 | >=470.82.01 | >=472.50 |
CUDA 11.4 更新3 | >=470.82.01 | >=472.50 |
CUDA 11.4 更新2 | >=470.57.02 | >=471.41 |
CUDA 11.4 更新1 | >=470.57.02 | >=471.41 |
CUDA 11.4.0 GA | >=470.42.01 | >=471.11 |
CUDA 11.3.1 更新1 | >=465.19.01 | >=465.89 |
CUDA 11.3.0 GA | >=465.19.01 | >=465.89 |
CUDA 11.2.2 更新2 | >=460.32.03 | >=461.33 |
CUDA 11.2.1 更新1 | >=460.32.03 | >=461.09 |
CUDA 11.2.0 GA | >=460.27.03 | >=460.82 |
CUDA 11.1.1 更新1 | >=455.32 | >=456.81 |
CUDA 11.1 GA | >=455.23 | >=456.38 |
CUDA 11.0.3 更新1 | >= 450.51.06 | >= 451.82 |
CUDA 11.0.2 GA | >= 450.51.05 | >= 451.48 |
CUDA 11.0.1 RC | >= 450.36.06 | >= 451.22 |
CUDA 10.2.89 | >= 440.33 | >= 441.22 |
CUDA 10.1 (10.1.105发行版与更新) | >= 418.39 | >= 418.96 |
CUDA 10.0.130 | >= 410.48 | >= 411.31 |
CUDA 9.2 (9.2.148 更新1) | >= 396.37 | >= 398.26 |
CUDA 9.2 (9.2.88) | >= 396.26 | >= 397.44 |
CUDA 9.1 (9.1.85) | >= 390.46 | >= 391.29 |
CUDA 9.0 (9.0.76) | >= 384.81 | >= 385.54 |
CUDA 8.0 (8.0.61 GA2) | >= 375.26 | >= 376.51 |
CUDA 8.0 (8.0.44) | >= 367.48 | >= 369.30 |
CUDA 7.5 (7.5.16) | >= 352.31 | >= 353.66 |
CUDA 7.0 (7.0.28) | >= 346.46 | >= 347.62 |
3、CUDA的下载与安装
3.1 CUDA 下载
- 下载 CUDA 11,.7 版本
3.2. 安装CUDA
3.1 选择程序安装
3.2 选择程临时解压路径
选择默认即可,安装过程中会使用临时解压路径(后面系统会自动删掉)。
3.3 系统检查完成后点击同意并继续
3.4 选择自定义安装
选择精简,这里建议默认安装,也可手动安装,但是要记得自己安装的位置,因为后面需要配置系统环境变量。
3.5 查看环境变量
在计算机上点右键,打开属性->高级系统设置->环境变量,可以看到安装后,自动默认在系统中配置好 CUDA_PATH 和 CUDA_PATH_V11_7 环境变量(版本号对应用户所下载的版本号):
3.6 查看版本
安装完毕在命令行输入 nvcc --version,可以看到我安装的是11.7。至此,CUDA的安装过程结束。
4、 安装cuDANN
- 下载 CUDA 11,.7 版本 对应的 cuDANN
- 下载官网: cuDNN Archive | NVIDIA Developer
解压cuDANN的压缩包发现里面会有三个文件夹 bin,include,lib,将它们复制到cuda安装下面C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.17,这是默认的路径
在路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\demo_suite中,用cmd运行bandwidthTest.exe和deviceQuery.exe,如果得到两个PASS就证明成功了,如图。
5、 选择 CUDA 对应的Pytorch、Pytorch 对应的Python
根据 CUDA 11.7 版本查看 Pytorch的对应版本为 12.1.1,再根据 Pytorch12.1.1版本查看Python对应的版本为 >=3.7 到 <=3.10 ,此处选择Python3.8案例。
6.安装Anaconda 或 Miniconda
因安装 Anaconda 或 Miniconda可以使用多个Python版本的环境,此处安装Miniconda为案例,版本为Miniconda3-py38 4.9.2-Windows-x86 64.exe,其中Python版本为3.8。
6.1 安裝Anaconda3(了解)
不太推荐,占用内存比较大。
-
Anaconda3清华大学开源镜像:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
- 安装过程见:Anacond下载安装配置教程详解_anaconda下载教程-CSDN博客
6.2 安装Miniconda(推荐)
- Miniconda清华大学开源镜像:Index of /anaconda/miniconda/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
- 安装过程见:Miniconda的下载安装和配置详解_miniconda下载-CSDN博客
7.安装虚拟环境
Anaconda 或 Miniconda安装后会自带一个虚拟环境base,且这个环境自带python3.8。但为了进行环境隔离,一般会创建新的虚拟环境。
7.1打开这个Anaconda Prompt应用
进入之后是以(base)开头
7.2 创建虚拟环境
执行:conda create -n pytorch python=3.8.5
7.3 激活环境
执行:conda activate pytorch
激活后会自动进入所创建的虚拟环境,可以在这个环境中进行各种库的安装与使用。
7.4 配置清华镜像源(此步可省略)
此处详细见 Miniconda的下载安装和配置详解--配置镜像步骤
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
conda config --set ssl_verify false
8、安装pytorch
8.1 进入官网获取安装命令
- 官网:PyTorch
8.2 进入虚拟环境,执行安装
# conda active envName,如:conda active pytorch
如果不使用虚拟环境安装则此步骤可以省略
安装方式一(不推荐):
- 获取对应pytorch安装命令
- 打开 Anaconda Prompt,执行
conda activate pytorch
进入虚拟环境pytorch
- 执行命令:conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia ,执行此命令是下载最新版本 pytorch torchvision torchaudio
- 注意:如果使用配置的清华镜像源,则需去掉 -c pytorch 和 -c nvidia ,否则会强制从官网下载会比较慢
安装方式二(推荐):
- 根据需要按版本选择(pytorch版本见上面 4、选择 CUDA 对应的Pytorch、Pytorch 对应的Python)
- 再根据 pytorch 版本 和 cuda版本确定 wheel 位置
- 选择根据cuda版本找到安装命令
- 打开 Anaconda Prompt,执行
conda activate pytorch
进入虚拟环境pytorch
- 根据 pytorch 版本 和 cuda版本确定 wheel 位置
- 选择根据cuda版本找到安装命令
- 打开 Anaconda Prompt,执行
conda activate pytorch
进入虚拟环境pytorch
-
执行命令进行安装
安装方式三:(强烈推荐)
- 手动下载 pytorch、torchvision 、 torchaudio
- 下载网址:https://download.pytorch.org/whl/torch_stable.html
01选择pytorch
02选择torchvision
03选择torchvision
其中 cu117 代表 cuda11.7,cp38 表示 python版本为 3.8
- 执行命令安装:
- 打开 Anaconda Prompt,执行
conda activate pytorch
进入虚拟环境pytorch
- 执行命令安装
其他两个安装相同方式安装。
8、验证安装是否成功
依次输入:
python
import torch
print(torch.__version__)
print(torch.cuda.is_available())
当显示为True时,表示安装pytorch成功。
=========================================================================
以下为了解内容
9、环境迁移(了解)
开发新项目三时,会用到多python独立环境,不同环境下安装相同的模块的情况,无需重新下载安装,利用pip freeze命令对之前安装好的环境进行迁移。
9.1 查看项目所安装的第三方库
进入安装目录,如虚拟环境 conda activate pytorch,
输入pip freeze ,可查看项目所安装的所有第三方库。
9.2 生成依赖环境文件
输入pip freeze > requirements.txt,可在工程目录下生成requirements.txt文件,里面记录了该工程的所有依赖包以及对应的版本号。
9.3 环境迁移
在新环境进行环境迁移,执行 :
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/,即可自动安装所有依赖 (requirements.txt文件必要时需要带上路径)