前言
- 所有的运算都是补码运算。
- 正数的补码是其本身
负数补码的计算方式:
由原码到补码:原码除符号位以外全部取反得到反码,再加1得到补码。(取反区别于~按位取反运算符,按位取反运算符是包括符号位在内全部取反)
由补码到原码:亦为除符号位以外取反加1,需注意,若补码为正,此时原码和其本身相等,无需取反加1,若不理解,请阅读下文加法例子。
例如(为方便清晰本文以 8bit 类型为例):
-3 的原码:1000 0011
-3 的反码:1111 1100
-3 的补码:1111 1101
两个不同情况的加法例子:
例1:-3 + 2
2 的补码为其本身: 0000 0010
-3 的补码为: 1111 1101
两者相加所得补码 :1111 1111
此时补码为负,除符号位取反加1得到原码:1000 0001,即 -1
例2: -3 + 5
5 的补码: 0000 0101
-3 的补码: 1111 1101
相加所得补码:1 0000 0010
左边 1 溢出范围,舍去:0000 0010
此时补码为正,原码和补码相等,原码亦为:0000 0010,即 2
减法
为了方便与效率,计算机统一做加法,不会做减法,减去一个数即为加上这个数的负数。
例如:5 - 6,会被处理为 5 + (-6),按照以上加法规则运算。
正数位移运算
正数位移较为简单,满足以下规则:
- 高位补 0
- 低位补 0
例如
5 >> 1:0000 0101 -> 0000 0010 (2)
5 << 1:0000 0101 -> 0000 1010 (10)
(加粗的 0 是补上的,下面的例子也一样)
整体表现为:
右移 x 位代表除以 2x,向下取整
左移 x 位代表乘以 2x。
负数位移运算
负数位移稍为特殊,满足以下规则:
- 高位补 1
- 低位补 0
- 符号位不动
右移例子:
-15 >> 2:
-15 的原码:1 000 1111
补码: 1 111 0001
右移一次: 1 111 1000(此时为 -8 的补码)
右移第二次:1 111 1100
求得原码: 1 000 0100,即为 -4
左移例子:
-15 << 1:
-15 补码: 1 111 0001
左移: 1 110 0010
求得原码:1 001 1110,即为 -30
整体表现为:
右移 x 位代表除以 2x,向下取整
左移 x 位代表乘以 2x。