基于 GEE Landsat C02 数据集合成 1986-2023 年的逐年年均 NDVI、多年均值、多年均值趋势折线图

目录

1 完整代码

2 运行结果



1 完整代码

//感兴趣的区域信息
var roi = ee.FeatureCollection('projects/ee-zhangkanghnust/assets/HengShaoLou');

Map.centerObject(roi);
Map.addLayer(roi, {'color': 'grey'}, 'roi');

// Applies scaling factors.
function applyScaleFactors(image) {
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
  return image.addBands(opticalBands, null, true)
              .addBands(thermalBands, null, true);
}

function rmCloudNew(image) {
  var cloudShadowBitMask = (1 << 4);
  var cloudsBitMask = (1 << 3);
  var qa = image.select('QA_PIXEL');
  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0)
                .and(qa.bitwiseAnd(cloudsBitMask).eq(0));
  return image.updateMask(mask)
              .copyProperties(image)
              .copyProperties(image, ["system:time_start"]);
}

var get_NDVI = function(image) {
  var NDVI = image.normalizedDifference(['nir', 'red']).rename(['NDVI']);
  image = image.addBands(NDVI);
  return image.select("NDVI");
};

var L8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
            .filterBounds(roi)
            .filter(ee.Filter.calendarRange(2014, 2023, 'year'))
            .filter(ee.Filter.calendarRange(1, 12, 'month'))
            .map(applyScaleFactors)
            .select(['SR_B4', 'SR_B5', 'QA_PIXEL'], ['red', 'nir', 'QA_PIXEL'])
            .map(rmCloudNew)
            .map(get_NDVI);

var L7 = ee.ImageCollection('LANDSAT/LE07/C02/T1_L2')
            .filterBounds(roi)
            .filter(ee.Filter.calendarRange(2012, 2013, 'year'))
            .filter(ee.Filter.calendarRange(1, 12, 'month'))
            .map(applyScaleFactors)
            .select(['SR_B3', 'SR_B4', 'QA_PIXEL'], ['red', 'nir', 'QA_PIXEL'])
            .map(rmCloudNew)
            .map(get_NDVI);

var L5 = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2')
            .filterBounds(roi)
            .filter(ee.Filter.calendarRange(1986, 2011, 'year'))
            .filter(ee.Filter.calendarRange(1, 12, 'month'))
            .map(applyScaleFactors)
            .select(['SR_B3', 'SR_B4', 'QA_PIXEL'], ['red', 'nir', 'QA_PIXEL'])
            .map(rmCloudNew)
            .map(get_NDVI);

var Landsat = ee.ImageCollection(L8.merge(L7).merge(L5))
              .sort("system:time_start");

// print("Landsat_data", Landsat);

var precipitationVis = {
    min: -1,
    max: 1,
    palette: ["FFFFFF", "CE7E45", "DF923D", "F1B555", "FCD163",
              "99B718", "74A901", "66A000", "529400", "3E8601",
              "207401", "056201", "004C00", "023B01", "012E01",
              "011D01", "011301"],
};

for (var i = 1986; i <= 2023; i++) {
  var ndvi_year = Landsat.filterDate(i + '-01-01', i + '-12-31').select('NDVI');
  var ndvi_mean = ndvi_year.mean().clip(roi);
  // print(i, ndvi_mean);
  // Map.addLayer(ndvi_mean, precipitationVis, i + '_ndvi_mean', false);
  Export.image.toDrive({
      image: ndvi_mean,
      description: i + 'year_mean',
      region: roi,
      scale: 30,
      maxPixels: 1e13,
      folder: 'NDVI_year'
  });
}

var years = ee.List.sequence(1986, 2023);

var collectYear = ee.ImageCollection(years
  .map(function(y) {
    var start = ee.Date.fromYMD(y, 1, 1);
    var end = start.advance(12, 'month');
    return Landsat.filterDate(start, end).reduce(ee.Reducer.mean()).float().set('system:time_start', y).set('year', y);
  })
);

print(collectYear, "ndvi_year");

var result_land = collectYear.mean().clip(roi);
print(result_land, 'ndvi_mean');
Map.addLayer(result_land, precipitationVis, 'ndvi_mean');

Export.image.toDrive({
    image: result_land,
    description: 'ndvi_mean',
    region: roi,
    scale: 30,
    maxPixels: 1e13,
    folder: 'NDVI_year'
});

var Yearly_chart = ui.Chart.image.series({
    imageCollection: collectYear.select('NDVI_mean'),
    region: roi,
    reducer: ee.Reducer.mean(),
    scale: 500,
    xProperty: 'year',
}).setOptions({
    interpolateNulls: true,
    lineWidth: 2,
    title: 'NDVI Yearly Series',
    vAxis: {title: 'NDVI'},
    hAxis: {title: 'Date'},
    trendlines: {0: {title: 'NDVI_trend', type: 'linear', showR2: true, color: 'red', visibleInLegend: true}}
});

print(Yearly_chart);

2 运行结果

运行结果可视化

多年NDVI均值趋势折线图

运行结果点击RUN可下载

多年NDVI均值折线图

多年NDVI均值雷达图
<think>好的,我现在需要帮助用户解决如何利用Google Earth Engine (GEE) 和 Landsat 8 数据集进行夏季多年连续的地表温度反演的问题。首先,我得回顾用户提供的引用内容和具体要求。 用户提到了两篇引用,其中引用[1]提到GEE可以用来计算Landsat的LST,但需要自己处理数据,而引用[2]则指出代码中需要替换的部分和参数获取的方法。用户的需求是进行夏季多年连续数据分析,所以需要确保时间范围覆盖多年,并且只选择夏季的影像。 首先,我应该考虑数据准备阶段。Landsat 8数据在GEE中的数据集LANDSAT/LC08/C02/T1_L2,所以需要先加载这个数据集。然后,用户需要过滤数据的时间范围,比如从2013至今,并且选择夏季的月份,比如6、7、8月。同时,还需要过滤云量,使用QA_PIXEL波段来去除云覆盖较多的影像,这可能需要使用maskL8sr函数。 接下来是地表温度反演的核心算法。单通道算法(SC算法)需要大气透过率、大气平均作用温度和水汽含量这三个参数。用户需要从NASA的网站或者其他可靠来源获取这些参数,或者根据研究区域的经验公式估算。例如,大气水汽含量可能与季节和地理位置相关,可能需要用户自行查找或使用气象数据辅助计算。 然后是辐射定标和地表比辐射率计算。辐射定标涉及到将DN值转换为大气表观反射率和辐射亮度。地表比辐射率可能根据NDVI的不同阈值进行计算,比如当NDVI大于0.5时认为是植被覆盖,小于0.2时为裸土,介于之间则用线性模型。这需要计算NDVI,并根据阈值设置不同的比辐射率值。 接着是亮温计算和地表温度反演。亮温计算需要热红外波段的辐射亮度和定标参数,使用普朗克公式的反函数。而地表温度则需要考虑地表比辐射率进行校正,可能需要使用特定的公式,例如SC算法中的公式。 在代码实现部分,用户需要定义一个函数来处理每个影像,包括辐射定标、NDVI计算、比辐射率计算、亮温和LST计算。然后,映射这个函数到整个影像集合,生成时间序列的数据。最后,导出结果或进行可视化。 用户可能遇到的问题包括如何获取大气参数,如何处理不同份的数据一致性,以及如何验证反演结果的准确性。此外,代码中的filter过滤和geometry设置可能需要用户根据自己的研究区域进行调整,比如指定中心经纬度或者区域边界。 最后,用户可能需要生成时间序列的图表或统计结果,以分析夏季地表温度的变化趋势。这部分可能需要使用GEE的ui.Chart函数来展示多年数据的变化。 总结步骤应该是:数据准备→参数获取→辐射定标→比辐射率计算→亮温计算→LST反演→时间序列分析→结果导出与可视化。需要确保每个步骤的代码正确,并且参数替换正确,同时处理云掩膜和季节筛选,以保证数据质量。</think>以下是通过Google Earth Engine (GEE) 和 Landsat 8 实现夏季多年连续地表温度反演的分步解决方案: --- ### **1. 数据准备与预处理** #### 1.1 加载Landsat 8数据集 ```javascript var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2013-01-01', '2023-12-31') // 根据需求调整份范围 .filter(ee.Filter.calendarRange(6, 8, 'month')) // 筛选夏季(6-8月) .map(maskL8sr); // 云掩膜处理 ``` #### 1.2 云掩膜函数 ```javascript function maskL8sr(image) { var qaMask = image.select('QA_PIXEL').bitwiseAnd(0b1111).eq(0); return image.updateMask(qaMask); } ``` --- ### **2. 地表温度反演算法(单通道算法SC)** $$ T_s = \frac{K_2}{\ln\left(\frac{K_1}{L_\lambda} + 1\right)} - 273.15 $$ 其中$L_\lambda$为热红外波段辐射亮度,$K_1=774.89$、$K_2=1321.08$为Landsat 8定标常数[^1]。 --- ### **3. 关键参数计算** #### 3.1 大气参数设置(需从NASA获取) ```javascript // 示例参数(需替换实际值) var tau = 0.8; // 大气透过率 var T_a = 295; // 大气平均作用温度 var w = 1.5; // 大气水汽含量(g/cm²) ``` #### 3.2 辐射定标 ```javascript var radiance = image.select('ST_B10').multiply(0.00341802).add(149.0); ``` #### 3.3 地表比辐射率(ε)计算 ```javascript var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI'); var epsilon = ee.Image(0.004).multiply(ndvi).add(0.986); // 经验公式 ``` --- ### **4. 完整代码实现** ```javascript function calculateLST(image) { // 辐射定标 var rad = image.select('ST_B10').multiply(0.00341802).add(149.0); // 计算NDVI与比辐射率 var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']); var epsilon = ndvi.gt(0.5).multiply(0.99) .add(ndvi.lt(0.2).multiply(0.96)) .add(ndvi.gte(0.2).and(ndvi.lte(0.5)).multiply(ndvi.subtract(0.2).multiply(0.03).add(0.96))); // 亮温计算 var BT = rad.divide(epsilon).divide(tau).add(1 - epsilon).multiply(T_a).log(); var LST = ee.Image(1321.08).divide(BT).subtract(273.15); return image.addBands(LST.rename('LST')); } var LST_collection = landsat8.map(calculateLST); ``` --- ### **5. 时间序列分析** ```javascript // 生成时间序列图表 var chart = ui.Chart.image.series({ imageCollection: LST_collection.select('LST'), region: geometry, // 替换为研究区域 reducer: ee.Reducer.mean(), scale: 30 }); print(chart); ``` --- ### **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值