51nod 1594 Gcd and Phi

51nod 1594 Gcd and Phi

原题链接:

https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1594

开始的时候。疯狂寻找:
gcd(φ(i),φ(j))

的性质。

最后得到一个奇怪的东西:

gcd(φ(i),φ(j))=φ(gcd(i,j))f(igcd(i,j))f(jgcd(i,j))

其中, f 为积性函数,f(Pk)=P1,f(1)=1

没有用。

也就出去晃荡了一会。

突然想到。本来就是要寻找 gcd (i,j) 有序对的一种直接映射关系,方便应用反演

φ(n)<n

用桶来存储一下每一个 φ(i) 对应对值的数量

那么,令
cnt(k)=i=1n[φ(i)=k]

那么
i=1nj=1nφ(φ(gcd(i,j)))=k=1nφ(k)i=1nj=1n[gcd(i,j)=k]cnt(i)cnt(j)

令:
f(k)=i=1nj=1n[gcd(i,j)=k]cnt(i)cnt(j)F(k)=k|df(d)

则:

F(k)=k|i,knk|j,jncnt(i)cnt(j)=(k|i,incnt(i))2

F 可以通过预处理得到。

f(k)=k|dμ(dk)F(d)

answer=k=1nφ(k)k|dμ(dk)F(d)

总时间复杂度 O(nlogn)

#include <algorithm>
#include <string.h>
#include <stdio.h>
#define MAXN 2000002
using namespace std;
typedef long long  LL;
int phi[MAXN],minDiv[MAXN],sum[MAXN];
int cnt[MAXN];
int F[MAXN];
bool vis[MAXN];
int prime[MAXN],mu[MAXN];
void init(int n=MAXN)
{
    int cnt=0;
    for(int i=1;i<n;i++) minDiv[i]=i;
    for(int i=2;i*i<n;i++)
    {
        if(minDiv[i]==i)
        {
            for(int j=i*i;j<n;j+=i)
            {
                minDiv[j]=i;
            }
        }
    }

    phi[1]=mu[1]=1;
    for(int i=2;i<n;i++)
    {
        phi[i]=phi[i/minDiv[i]];
        if((i/minDiv[i])%minDiv[i]==0)
            phi[i]*=minDiv[i];
        else
            phi[i]*=minDiv[i]-1;

        if(!vis[i])
        {
            prime[cnt++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<cnt&&i*prime[j]<n;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else
                mu[i*prime[j]]=-mu[i];
        }
    }
}
int main ()
{
    init();
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        n++;
        memset(cnt,0,(n+1)*sizeof(int));
        for(int i=1;i<n;i++) cnt[phi[i]]++;
        for(int i=1;i<n;i++)
        {
            F[i]=0;
            for(int j=i;j<n;j+=i)  F[i]+=cnt[j];
        }
        LL ans=0;
        for(int k=1;k<n;k++)
        {
            if(F[k]<1)continue;
            LL u=0;
            for(int d=k,t=1;d<n;d+=k,t++)  u+=(LL)mu[t]*F[d]*F[d];
            ans+=phi[k]*u;
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值